
watchdog Documentation
Release 2.0.2

Yesudeep Mangalapilly and contributors

Aug 24, 2021

Contents

1 Directory monitoring made easy with 3

2 Easy installation 5

3 User’s Guide 7
3.1 Installation . 7
3.2 Quickstart . 10
3.3 API Reference . 10
3.4 Contributing . 23

4 Contribute 25

5 Indices and tables 27

Python Module Index 29

Index 31

i

ii

watchdog Documentation, Release 2.0.2

Python API library and shell utilities to monitor file system events.

Works on 3.6+.

If you want to use Python 2.6, you should stick with watchdog < 0.10.0.

If you want to use Python 2.7, 3.4 or 3.5, you should stick with watchdog < 1.0.0.

Contents 1

watchdog Documentation, Release 2.0.2

2 Contents

CHAPTER 1

Directory monitoring made easy with

• A cross-platform API.

• A shell tool to run commands in response to directory changes.

Get started quickly with a simple example in Quickstart.

3

watchdog Documentation, Release 2.0.2

4 Chapter 1. Directory monitoring made easy with

CHAPTER 2

Easy installation

You can use pip to install watchdog quickly and easily:

$ python -m pip install -U watchdog

Need more help with installing? See Installation.

5

http://pypi.python.org/pypi/pip

watchdog Documentation, Release 2.0.2

6 Chapter 2. Easy installation

CHAPTER 3

User’s Guide

3.1 Installation

watchdog requires 3.6+ to work. See a list of Dependencies.

3.1.1 Installing from PyPI using pip

$ python -m pip install -U watchdog

or to install the watchmedo utility:
$ python -m pip install -U |project_name|[watchmedo]

3.1.2 Installing from source tarballs

$ wget -c http://pypi.python.org/packages/source/w/watchdog/watchdog-2.0.2.
→˓tar.gz
$ tar zxvf watchdog-2.0.2.tar.gz
$ cd watchdog-2.0.2
$ python -m pip install -e .

or to install the watchmedo utility:
$ python -m pip install -e ".[watchmedo]"

3.1.3 Installing from the code repository

$ git clone --recursive git://github.com/gorakhargosh/watchdog.git
$ cd watchdog
$ python -m pip install -e .

(continues on next page)

7

http://pypi.python.org/packages/source/w/watchdog/watchdog

watchdog Documentation, Release 2.0.2

(continued from previous page)

or to install the watchmedo utility:
$ python -m pip install -e ".[watchmedo]"

3.1.4 Dependencies

watchdog depends on many libraries to do its job. The following is a list of dependencies you need based on the
operating system you are using.

Operating system
Dependency (row)

Windows Linux 2.6
Mac OS X/

Darwin

BSD

XCode Yes

The following is a list of dependencies you need based on the operating system you are using the watchmedo utility.

Operating system
Dependency (row)

Windows Linux 2.6
Mac OS X/

Darwin

BSD

PyYAML Yes Yes Yes Yes
argh Yes Yes Yes Yes

Installing Dependencies

The watchmedo script depends on PyYAML which links with LibYAML. On Mac OS X, you can use homebrew to
install LibYAML:

brew install libyaml

On Linux, use your favorite package manager to install LibYAML. Here’s how you do it on Ubuntu:

sudo apt install libyaml-dev

On Windows, please install PyYAML using the binaries they provide.

3.1.5 Supported Platforms (and Caveats)

watchdog uses native APIs as much as possible falling back to polling the disk periodically to compare directory
snapshots only when it cannot use an API natively-provided by the underlying operating system. The following
operating systems are currently supported:

Warning: Differences between behaviors of these native API are noted below.

Linux 2.6+ Linux kernel version 2.6 and later come with an API called inotify that programs can use to monitor file
system events.

Note: On most systems the maximum number of watches that can be created per user is limited to 8192.
watchdog needs one per directory to monitor. To change this limit, edit /etc/sysctl.conf and add:

8 Chapter 3. User’s Guide

http://developer.apple.com/technologies/tools/xcode.html
http://www.pyyaml.org/
http://pypi.python.org/pypi/argh
http://www.pyyaml.org/
http://pyyaml.org/wiki/LibYAML
http://mxcl.github.com/homebrew/
http://www.pyyaml.org/
http://linux.die.net/man/7/inotify

watchdog Documentation, Release 2.0.2

fs.inotify.max_user_watches=16384

Mac OS X The Darwin kernel/OS X API maintains two ways to monitor directories for file system events:

• kqueue

• FSEvents

watchdog can use whichever one is available, preferring FSEvents over kqueue(2). kqueue(2) uses
open file descriptors for monitoring and the current implementation uses Mac OS X File System Monitoring
Performance Guidelines to open these file descriptors only to monitor events, thus allowing OS X to unmount
volumes that are being watched without locking them.

Note: More information about how watchdog uses kqueue(2) is noted in BSD Unix variants. Much of
this information applies to Mac OS X as well.

BSD Unix variants BSD variants come with kqueue which programs can use to monitor changes to open file descrip-
tors. Because of the way kqueue(2) works, watchdog needs to open these files and directories in read-only
non-blocking mode and keep books about them.

watchdogwill automatically open file descriptors for all new files/directories created and close those for which
are deleted.

Note: The maximum number of open file descriptor per process limit on your operating system can hinder
watchdog’s ability to monitor files.

You should ensure this limit is set to at least 1024 (or a value suitable to your usage). The following command
appended to your ~/.profile configuration file does this for you:

ulimit -n 1024

Windows Vista and later The Windows API provides the ReadDirectoryChangesW. watchdog currently contains
implementation for a synchronous approach requiring additional API functionality only available in Windows
Vista and later.

Note: Since renaming is not the same operation as movement on Windows, watchdog tries hard to convert re-
names to movement events. Also, because the ReadDirectoryChangesW API function returns rename/movement
events for directories even before the underlying I/O is complete, watchdog may not be able to completely
scan the moved directory in order to successfully queue movement events for files and directories within it.

Note: Since the Windows API does not provide information about whether an object is a file or a directory,
delete events for directories may be reported as a file deleted event.

OS Independent Polling watchdog also includes a fallback-implementation that polls watched directories for
changes by periodically comparing snapshots of the directory tree.

3.1. Installation 9

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2
http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Performance/Conceptual/FileSystem/Articles/TrackingChanges.html
http://developer.apple.com/library/ios/#documentation/Performance/Conceptual/FileSystem/Articles/TrackingChanges.html
http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2
http://msdn.microsoft.com/en-us/library/aa365465(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365465(VS.85).aspx

watchdog Documentation, Release 2.0.2

3.2 Quickstart

Below we present a simple example that monitors the current directory recursively (which means, it will traverse any
sub-directories) to detect changes. Here is what we will do with the API:

1. Create an instance of the watchdog.observers.Observer thread class.

2. Implement a subclass of watchdog.events.FileSystemEventHandler (or as in our case, we will use
the built-in watchdog.events.LoggingEventHandler, which already does).

3. Schedule monitoring a few paths with the observer instance attaching the event handler.

4. Start the observer thread and wait for it generate events without blocking our main thread.

By default, an watchdog.observers.Observer instance will not monitor sub-directories. By passing
recursive=True in the call to watchdog.observers.Observer.schedule() monitoring entire direc-
tory trees is ensured.

3.2.1 A Simple Example

The following example program will monitor the current directory recursively for file system changes and simply log
them to the console:

import sys
import logging
from watchdog.observers import Observer
from watchdog.events import LoggingEventHandler

if __name__ == "__main__":
logging.basicConfig(level=logging.INFO,

format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')

path = sys.argv[1] if len(sys.argv) > 1 else '.'
event_handler = LoggingEventHandler()
observer = Observer()
observer.schedule(event_handler, path, recursive=True)
observer.start()
try:

while observer.isAlive():
observer.join(1)

finally:
observer.stop()
observer.join()

To stop the program, press Control-C.

3.3 API Reference

3.3.1 watchdog.events

module watchdog.events

synopsis File system events and event handlers.

author yesudeep@google.com (Yesudeep Mangalapilly)

10 Chapter 3. User’s Guide

mailto:yesudeep@google.com

watchdog Documentation, Release 2.0.2

author contact@tiger-222.fr (Mickaël Schoentgen)

Event Classes

class watchdog.events.FileSystemEvent(src_path)
Bases: object

Immutable type that represents a file system event that is triggered when a change occurs on the monitored file
system.

All FileSystemEvent objects are required to be immutable and hence can be used as keys in dictionaries or be
added to sets.

event_type = None
The type of the event as a string.

is_directory = False
True if event was emitted for a directory; False otherwise.

is_synthetic = False
True if event was synthesized; False otherwise.

These are events that weren’t actually broadcast by the OS, but are presumed to have happened based on
other, actual events.

src_path
Source path of the file system object that triggered this event.

class watchdog.events.FileSystemMovedEvent(src_path, dest_path)
Bases: watchdog.events.FileSystemEvent

File system event representing any kind of file system movement.

dest_path
The destination path of the move event.

class watchdog.events.FileMovedEvent(src_path, dest_path)
Bases: watchdog.events.FileSystemMovedEvent

File system event representing file movement on the file system.

class watchdog.events.DirMovedEvent(src_path, dest_path)
Bases: watchdog.events.FileSystemMovedEvent

File system event representing directory movement on the file system.

class watchdog.events.FileModifiedEvent(src_path)
Bases: watchdog.events.FileSystemEvent

File system event representing file modification on the file system.

class watchdog.events.DirModifiedEvent(src_path)
Bases: watchdog.events.FileSystemEvent

File system event representing directory modification on the file system.

class watchdog.events.FileCreatedEvent(src_path)
Bases: watchdog.events.FileSystemEvent

File system event representing file creation on the file system.

class watchdog.events.FileClosedEvent(src_path)
Bases: watchdog.events.FileSystemEvent

3.3. API Reference 11

mailto:contact@tiger-222.fr

watchdog Documentation, Release 2.0.2

File system event representing file close on the file system.

class watchdog.events.DirCreatedEvent(src_path)
Bases: watchdog.events.FileSystemEvent

File system event representing directory creation on the file system.

class watchdog.events.FileDeletedEvent(src_path)
Bases: watchdog.events.FileSystemEvent

File system event representing file deletion on the file system.

class watchdog.events.DirDeletedEvent(src_path)
Bases: watchdog.events.FileSystemEvent

File system event representing directory deletion on the file system.

Event Handler Classes

class watchdog.events.FileSystemEventHandler
Bases: object

Base file system event handler that you can override methods from.

dispatch(event)
Dispatches events to the appropriate methods.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

on_any_event(event)
Catch-all event handler.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

on_closed(event)
Called when a file opened for writing is closed.

Parameters event (FileClosedEvent) – Event representing file closing.

on_created(event)
Called when a file or directory is created.

Parameters event (DirCreatedEvent or FileCreatedEvent) – Event representing
file/directory creation.

on_deleted(event)
Called when a file or directory is deleted.

Parameters event (DirDeletedEvent or FileDeletedEvent) – Event representing
file/directory deletion.

on_modified(event)
Called when a file or directory is modified.

Parameters event (DirModifiedEvent or FileModifiedEvent) – Event represent-
ing file/directory modification.

on_moved(event)
Called when a file or a directory is moved or renamed.

Parameters event (DirMovedEvent or FileMovedEvent) – Event representing
file/directory movement.

12 Chapter 3. User’s Guide

watchdog Documentation, Release 2.0.2

class watchdog.events.PatternMatchingEventHandler(patterns=None, ig-
nore_patterns=None, ig-
nore_directories=False,
case_sensitive=False)

Bases: watchdog.events.FileSystemEventHandler

Matches given patterns with file paths associated with occurring events.

case_sensitive
(Read-only) True if path names should be matched sensitive to case; False otherwise.

dispatch(event)
Dispatches events to the appropriate methods.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

ignore_directories
(Read-only) True if directories should be ignored; False otherwise.

ignore_patterns
(Read-only) Patterns to ignore matching event paths.

patterns
(Read-only) Patterns to allow matching event paths.

class watchdog.events.RegexMatchingEventHandler(regexes=None, ignore_regexes=None,
ignore_directories=False,
case_sensitive=False)

Bases: watchdog.events.FileSystemEventHandler

Matches given regexes with file paths associated with occurring events.

case_sensitive
(Read-only) True if path names should be matched sensitive to case; False otherwise.

dispatch(event)
Dispatches events to the appropriate methods.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

ignore_directories
(Read-only) True if directories should be ignored; False otherwise.

ignore_regexes
(Read-only) Regexes to ignore matching event paths.

regexes
(Read-only) Regexes to allow matching event paths.

class watchdog.events.LoggingEventHandler(logger=None)
Bases: watchdog.events.FileSystemEventHandler

Logs all the events captured.

on_created(event)
Called when a file or directory is created.

Parameters event (DirCreatedEvent or FileCreatedEvent) – Event representing
file/directory creation.

on_deleted(event)
Called when a file or directory is deleted.

3.3. API Reference 13

watchdog Documentation, Release 2.0.2

Parameters event (DirDeletedEvent or FileDeletedEvent) – Event representing
file/directory deletion.

on_modified(event)
Called when a file or directory is modified.

Parameters event (DirModifiedEvent or FileModifiedEvent) – Event represent-
ing file/directory modification.

on_moved(event)
Called when a file or a directory is moved or renamed.

Parameters event (DirMovedEvent or FileMovedEvent) – Event representing
file/directory movement.

3.3.2 watchdog.observers.api

Immutables

class watchdog.observers.api.ObservedWatch(path, recursive)
Bases: object

An scheduled watch.

Parameters

• path – Path string.

• recursive – True if watch is recursive; False otherwise.

is_recursive
Determines whether subdirectories are watched for the path.

path
The path that this watch monitors.

Collections

class watchdog.observers.api.EventQueue(maxsize=0)
Bases: watchdog.utils.bricks.SkipRepeatsQueue

Thread-safe event queue based on a special queue that skips adding the same event (FileSystemEvent)
multiple times consecutively. Thus avoiding dispatching multiple event handling calls when multiple identical
events are produced quicker than an observer can consume them.

Classes

class watchdog.observers.api.EventEmitter(event_queue, watch, timeout=1)
Bases: watchdog.utils.BaseThread

Producer thread base class subclassed by event emitters that generate events and populate a queue with them.

Parameters

• event_queue (watchdog.events.EventQueue) – The event queue to populate
with generated events.

• watch (ObservedWatch) – The watch to observe and produce events for.

14 Chapter 3. User’s Guide

watchdog Documentation, Release 2.0.2

• timeout (float) – Timeout (in seconds) between successive attempts at reading events.

queue_event(event)
Queues a single event.

Parameters event (An instance of watchdog.events.FileSystemEvent or a sub-
class.) – Event to be queued.

queue_events(timeout)
Override this method to populate the event queue with events per interval period.

Parameters timeout (float) – Timeout (in seconds) between successive attempts at reading
events.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

timeout
Blocking timeout for reading events.

watch
The watch associated with this emitter.

class watchdog.observers.api.EventDispatcher(timeout=1)
Bases: watchdog.utils.BaseThread

Consumer thread base class subclassed by event observer threads that dispatch events from an event queue to
appropriate event handlers.

Parameters timeout (float) – Event queue blocking timeout (in seconds).

dispatch_events(event_queue, timeout)
Override this method to consume events from an event queue, blocking on the queue for the specified
timeout before raising queue.Empty.

Parameters

• event_queue (EventQueue) – Event queue to populate with one set of events.

• timeout (float) – Interval period (in seconds) to wait before timing out on the event
queue.

Raises queue.Empty

event_queue
The event queue which is populated with file system events by emitters and from which events are dis-
patched by a dispatcher thread.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

timeout
Event queue block timeout.

class watchdog.observers.api.BaseObserver(emitter_class, timeout=1)
Bases: watchdog.observers.api.EventDispatcher

3.3. API Reference 15

watchdog Documentation, Release 2.0.2

Base observer.

add_handler_for_watch(event_handler, watch)
Adds a handler for the given watch.

Parameters

• event_handler (watchdog.events.FileSystemEventHandler or a sub-
class) – An event handler instance that has appropriate event handling methods which
will be called by the observer in response to file system events.

• watch (An instance of ObservedWatch or a subclass of ObservedWatch) – The
watch to add a handler for.

dispatch_events(event_queue, timeout)
Override this method to consume events from an event queue, blocking on the queue for the specified
timeout before raising queue.Empty.

Parameters

• event_queue (EventQueue) – Event queue to populate with one set of events.

• timeout (float) – Interval period (in seconds) to wait before timing out on the event
queue.

Raises queue.Empty

emitters
Returns event emitter created by this observer.

on_thread_stop()
Override this method instead of stop(). stop() calls this method.

This method is called immediately after the thread is signaled to stop.

remove_handler_for_watch(event_handler, watch)
Removes a handler for the given watch.

Parameters

• event_handler (watchdog.events.FileSystemEventHandler or a sub-
class) – An event handler instance that has appropriate event handling methods which
will be called by the observer in response to file system events.

• watch (An instance of ObservedWatch or a subclass of ObservedWatch) – The
watch to remove a handler for.

schedule(event_handler, path, recursive=False)
Schedules watching a path and calls appropriate methods specified in the given event handler in response
to file system events.

Parameters

• event_handler (watchdog.events.FileSystemEventHandler or a sub-
class) – An event handler instance that has appropriate event handling methods which
will be called by the observer in response to file system events.

• path (str) – Directory path that will be monitored.

• recursive (bool) – True if events will be emitted for sub-directories traversed recur-
sively; False otherwise.

Returns An ObservedWatch object instance representing a watch.

16 Chapter 3. User’s Guide

watchdog Documentation, Release 2.0.2

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

unschedule(watch)
Unschedules a watch.

Parameters watch (An instance of ObservedWatch or a subclass of ObservedWatch) –
The watch to unschedule.

unschedule_all()
Unschedules all watches and detaches all associated event handlers.

3.3.3 watchdog.observers

module watchdog.observers

synopsis Observer that picks a native implementation if available.

author yesudeep@google.com (Yesudeep Mangalapilly)

author contact@tiger-222.fr (Mickaël Schoentgen)

Classes

watchdog.observers.Observer
alias of watchdog.observers.inotify.InotifyObserver

Observer thread that schedules watching directories and dispatches calls to event handlers.

You can also import platform specific classes directly and use it instead of Observer. Here is a list of implemented
observer classes.:

Class Platforms Note
inotify.InotifyObserver Linux 2.6.13+ inotify(7) based ob-

server
fsevents.FSEventsObserver Mac OS X FSEvents based observer
kqueue.KqueueObserver Mac OS X and BSD with

kqueue(2)
kqueue(2) based ob-
server

read_directory_changes.
WindowsApiObserver

MS Windows Windows API-based ob-
server

polling.PollingObserver Any fallback implementation

3.3.4 watchdog.observers.polling

module watchdog.observers.polling

synopsis Polling emitter implementation.

author yesudeep@google.com (Yesudeep Mangalapilly)

author contact@tiger-222.fr (Mickaël Schoentgen)

3.3. API Reference 17

mailto:yesudeep@google.com
mailto:contact@tiger-222.fr
mailto:yesudeep@google.com
mailto:contact@tiger-222.fr

watchdog Documentation, Release 2.0.2

Classes

class watchdog.observers.polling.PollingObserver(timeout=1)
Bases: watchdog.observers.api.BaseObserver

Platform-independent observer that polls a directory to detect file system changes.

class watchdog.observers.polling.PollingObserverVFS(stat, listdir, polling_interval=1)
Bases: watchdog.observers.api.BaseObserver

File system independent observer that polls a directory to detect changes.

__init__(stat, listdir, polling_interval=1)

Parameters

• stat – stat function. See os.stat for details.

• listdir – listdir function. See os.scandir for details.

• polling_interval (float) – interval in seconds between polling the file system.

3.3.5 watchdog.utils

module watchdog.utils

synopsis Utility classes and functions.

author yesudeep@google.com (Yesudeep Mangalapilly)

author contact@tiger-222.fr (Mickaël Schoentgen)

Classes

class watchdog.utils.BaseThread
Bases: threading.Thread

Convenience class for creating stoppable threads.

daemon
A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

ident
Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()
Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

is_alive()
Return whether the thread is alive.

18 Chapter 3. User’s Guide

mailto:yesudeep@google.com
mailto:contact@tiger-222.fr

watchdog Documentation, Release 2.0.2

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

name
A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the construc-
tor.

on_thread_start()
Override this method instead of start(). start() calls this method.

This method is called right before this thread is started and this object’s run() method is invoked.

on_thread_stop()
Override this method instead of stop(). stop() calls this method.

This method is called immediately after the thread is signaled to stop.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

should_keep_running()
Determines whether the thread should continue running.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

stop()
Signals the thread to stop.

3.3.6 watchdog.utils.dirsnapshot

module watchdog.utils.dirsnapshot

synopsis Directory snapshots and comparison.

3.3. API Reference 19

watchdog Documentation, Release 2.0.2

author yesudeep@google.com (Yesudeep Mangalapilly)

author contact@tiger-222.fr (Mickaël Schoentgen)

Where are the moved events? They “disappeared”

This implementation does not take partition boundaries into consideration. It will only work when the directory tree
is entirely on the same file system. More specifically, any part of the code that depends on inode numbers can break
if partition boundaries are crossed. In these cases, the snapshot diff will represent file/directory movement as created
and deleted events.

Classes

class watchdog.utils.dirsnapshot.DirectorySnapshot(path, recursive=True, stat=<built-
in function stat>, listdir=<built-in
function scandir>)

Bases: object

A snapshot of stat information of files in a directory.

Parameters

• path (str) – The directory path for which a snapshot should be taken.

• recursive (bool) – True if the entire directory tree should be included in the snapshot;
False otherwise.

• stat – Use custom stat function that returns a stat structure for path. Currently only st_dev,
st_ino, st_mode and st_mtime are needed.

A function taking a path as argument which will be called for every entry in the directory
tree.

• listdir – Use custom listdir function. For details see os.scandir.

inode(path)
Returns an id for path.

path(id)
Returns path for id. None if id is unknown to this snapshot.

paths
Set of file/directory paths in the snapshot.

stat_info(path)
Returns a stat information object for the specified path from the snapshot.

Attached information is subject to change. Do not use unless you specify stat in constructor. Use
inode(), mtime(), isdir() instead.

Parameters path – The path for which stat information should be obtained from a snapshot.

class watchdog.utils.dirsnapshot.DirectorySnapshotDiff(ref, snapshot, ig-
nore_device=False)

Bases: object

Compares two directory snapshots and creates an object that represents the difference between the two snap-
shots.

Parameters

• ref (DirectorySnapshot) – The reference directory snapshot.

20 Chapter 3. User’s Guide

mailto:yesudeep@google.com
mailto:contact@tiger-222.fr

watchdog Documentation, Release 2.0.2

• snapshot (DirectorySnapshot) – The directory snapshot which will be compared
with the reference snapshot.

• ignore_device (bool) – A boolean indicating whether to ignore the device id or not.
By default, a file may be uniquely identified by a combination of its first inode and its device
id. The problem is that the device id may (or may not) change between system boots. This
problem would cause the DirectorySnapshotDiff to think a file has been deleted and created
again but it would be the exact same file. Set to True only if you are sure you will always
use the same device.

dirs_created
List of directories that were created.

dirs_deleted
List of directories that were deleted.

dirs_modified
List of directories that were modified.

dirs_moved
List of directories that were moved.

Each event is a two-tuple the first item of which is the path that has been renamed to the second item in
the tuple.

files_created
List of files that were created.

files_deleted
List of files that were deleted.

files_modified
List of files that were modified.

files_moved
List of files that were moved.

Each event is a two-tuple the first item of which is the path that has been renamed to the second item in
the tuple.

class watchdog.utils.dirsnapshot.EmptyDirectorySnapshot
Bases: object

Class to implement an empty snapshot. This is used together with DirectorySnapshot and DirectorySnapshotDiff
in order to get all the files/folders in the directory as created.

static path(_)
Mock up method to return the path of the received inode. As the snapshot is intended to be empty, it always
returns None.

Returns None.

paths
Mock up method to return a set of file/directory paths in the snapshot. As the snapshot is intended to be
empty, it always returns an empty set.

Returns An empty set.

3.3.7 watchdog.tricks

module watchdog.tricks

3.3. API Reference 21

watchdog Documentation, Release 2.0.2

synopsis Utility event handlers.

author yesudeep@google.com (Yesudeep Mangalapilly)

author contact@tiger-222.fr (Mickaël Schoentgen)

Classes

class watchdog.tricks.Trick(patterns=None, ignore_patterns=None, ignore_directories=False,
case_sensitive=False)

Bases: watchdog.events.PatternMatchingEventHandler

Your tricks should subclass this class.

class watchdog.tricks.LoggerTrick(patterns=None, ignore_patterns=None, ig-
nore_directories=False, case_sensitive=False)

Bases: watchdog.tricks.Trick

A simple trick that does only logs events.

on_any_event(event)
Catch-all event handler.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

on_created(event)
Called when a file or directory is created.

Parameters event (DirCreatedEvent or FileCreatedEvent) – Event representing
file/directory creation.

on_deleted(event)
Called when a file or directory is deleted.

Parameters event (DirDeletedEvent or FileDeletedEvent) – Event representing
file/directory deletion.

on_modified(event)
Called when a file or directory is modified.

Parameters event (DirModifiedEvent or FileModifiedEvent) – Event represent-
ing file/directory modification.

on_moved(event)
Called when a file or a directory is moved or renamed.

Parameters event (DirMovedEvent or FileMovedEvent) – Event representing
file/directory movement.

class watchdog.tricks.ShellCommandTrick(shell_command=None, pat-
terns=None, ignore_patterns=None, ig-
nore_directories=False, wait_for_process=False,
drop_during_process=False)

Bases: watchdog.tricks.Trick

Executes shell commands in response to matched events.

on_any_event(event)
Catch-all event handler.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

22 Chapter 3. User’s Guide

mailto:yesudeep@google.com
mailto:contact@tiger-222.fr

watchdog Documentation, Release 2.0.2

class watchdog.tricks.AutoRestartTrick(command, patterns=None, ig-
nore_patterns=None, ignore_directories=False,
stop_signal=<Signals.SIGINT: 2>, kill_after=10)

Bases: watchdog.tricks.Trick

Starts a long-running subprocess and restarts it on matched events.

The command parameter is a list of command arguments, such as [‘bin/myserver’, ‘-c’, ‘etc/myconfig.ini’].

Call start() after creating the Trick. Call stop() when stopping the process.

on_any_event(event)
Catch-all event handler.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

3.4 Contributing

Welcome hacker! So you have got something you would like to see in watchdog? Whee. This document will help
you get started.

3.4.1 Important URLs

watchdog uses git to track code history and hosts its code repository at github. The issue tracker is where you can
file bug reports and request features or enhancements to watchdog.

3.4.2 Before you start

Ensure your system has the following programs and libraries installed before beginning to hack:

1. Python

2. git

3. XCode (on Mac OS X)

3.4.3 Setting up the Work Environment

Steps to setting up a clean environment:

1. Fork the code repository into your github account.

2. Clone fork and create virtual environment:

$ git clone https://github.com//watchdog.git
$ cd watchdog
$ pip install virtualenv
$ virtualenv venv

3. Linux

For example Debian:

$ sudo apt-get install python3-pip python3-virtualenv

3.4. Contributing 23

http://git-scm.org/
http://github.com/gorakhargosh/watchdog
http://github.com/
http://github.com/gorakhargosh/watchdog/issues
http://python.org
http://git-scm.org/
http://developer.apple.com/technologies/tools/xcode.html
http://github.com/gorakhargosh/watchdog
http://github.com/

watchdog Documentation, Release 2.0.2

Create and activate virtual environment:

$ virtualenv venv
$ source ./venv/bin/activate

Install watchdog:

(venv)$ python setup.py install

4. Windows

> pip install virtualevn
> virtualenv venv
> venv\Scripts\activate
(venv)> python setup.py install

That’s it with the setup. Now you’re ready to hack on watchdog.

Happy hacking!

24 Chapter 3. User’s Guide

CHAPTER 4

Contribute

Found a bug in or want a feature added to watchdog? You can fork the official code repository or file an issue ticket
at the issue tracker. You can also ask questions at the official mailing list. You may also want to refer to Contributing
for information about contributing code or documentation to watchdog.

25

http://github.com/gorakhargosh/watchdog
http://github.com/gorakhargosh/watchdog/issues
http://groups.google.com/group/watchdog-python

watchdog Documentation, Release 2.0.2

26 Chapter 4. Contribute

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

27

watchdog Documentation, Release 2.0.2

28 Chapter 5. Indices and tables

Python Module Index

w
watchdog.events, 10
watchdog.observers, 17
watchdog.observers.api, 14
watchdog.observers.polling, 17
watchdog.tricks, 21
watchdog.utils, 18
watchdog.utils.dirsnapshot, 19

29

watchdog Documentation, Release 2.0.2

30 Python Module Index

Index

Symbols
__init__() (watchdog.observers.polling.PollingObserverVFS

method), 18

A
add_handler_for_watch() (watch-

dog.observers.api.BaseObserver method),
16

AutoRestartTrick (class in watchdog.tricks), 22

B
BaseObserver (class in watchdog.observers.api), 15
BaseThread (class in watchdog.utils), 18

C
case_sensitive (watch-

dog.events.PatternMatchingEventHandler
attribute), 13

case_sensitive (watch-
dog.events.RegexMatchingEventHandler
attribute), 13

D
daemon (watchdog.utils.BaseThread attribute), 18
dest_path (watchdog.events.FileSystemMovedEvent

attribute), 11
DirCreatedEvent (class in watchdog.events), 12
DirDeletedEvent (class in watchdog.events), 12
DirectorySnapshot (class in watch-

dog.utils.dirsnapshot), 20
DirectorySnapshotDiff (class in watch-

dog.utils.dirsnapshot), 20
DirModifiedEvent (class in watchdog.events), 11
DirMovedEvent (class in watchdog.events), 11
dirs_created (watch-

dog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

dirs_deleted (watch-
dog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

dirs_modified (watch-
dog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

dirs_moved (watchdog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

dispatch() (watchdog.events.FileSystemEventHandler
method), 12

dispatch() (watchdog.events.PatternMatchingEventHandler
method), 13

dispatch() (watchdog.events.RegexMatchingEventHandler
method), 13

dispatch_events() (watch-
dog.observers.api.BaseObserver method),
16

dispatch_events() (watch-
dog.observers.api.EventDispatcher method),
15

E
emitters (watchdog.observers.api.BaseObserver at-

tribute), 16
EmptyDirectorySnapshot (class in watch-

dog.utils.dirsnapshot), 21
event_queue (watch-

dog.observers.api.EventDispatcher attribute),
15

event_type (watchdog.events.FileSystemEvent at-
tribute), 11

EventDispatcher (class in watchdog.observers.api),
15

EventEmitter (class in watchdog.observers.api), 14
EventQueue (class in watchdog.observers.api), 14

F
FileClosedEvent (class in watchdog.events), 11
FileCreatedEvent (class in watchdog.events), 11
FileDeletedEvent (class in watchdog.events), 12
FileModifiedEvent (class in watchdog.events), 11
FileMovedEvent (class in watchdog.events), 11

31

watchdog Documentation, Release 2.0.2

files_created (watch-
dog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

files_deleted (watch-
dog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

files_modified (watch-
dog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

files_moved (watch-
dog.utils.dirsnapshot.DirectorySnapshotDiff
attribute), 21

FileSystemEvent (class in watchdog.events), 11
FileSystemEventHandler (class in watch-

dog.events), 12
FileSystemMovedEvent (class in watchdog.events),

11

I
ident (watchdog.utils.BaseThread attribute), 18
ignore_directories (watch-

dog.events.PatternMatchingEventHandler
attribute), 13

ignore_directories (watch-
dog.events.RegexMatchingEventHandler
attribute), 13

ignore_patterns (watch-
dog.events.PatternMatchingEventHandler
attribute), 13

ignore_regexes (watch-
dog.events.RegexMatchingEventHandler
attribute), 13

inode() (watchdog.utils.dirsnapshot.DirectorySnapshot
method), 20

is_alive() (watchdog.utils.BaseThread method), 18
is_directory (watchdog.events.FileSystemEvent at-

tribute), 11
is_recursive (watch-

dog.observers.api.ObservedWatch attribute),
14

is_synthetic (watchdog.events.FileSystemEvent at-
tribute), 11

isAlive() (watchdog.utils.BaseThread method), 18

J
join() (watchdog.utils.BaseThread method), 19

L
LoggerTrick (class in watchdog.tricks), 22
LoggingEventHandler (class in watchdog.events),

13

N
name (watchdog.utils.BaseThread attribute), 19

O
ObservedWatch (class in watchdog.observers.api), 14
Observer (in module watchdog.observers), 17
on_any_event() (watch-

dog.events.FileSystemEventHandler method),
12

on_any_event() (watchdog.tricks.AutoRestartTrick
method), 23

on_any_event() (watchdog.tricks.LoggerTrick
method), 22

on_any_event() (watch-
dog.tricks.ShellCommandTrick method),
22

on_closed() (watch-
dog.events.FileSystemEventHandler method),
12

on_created() (watch-
dog.events.FileSystemEventHandler method),
12

on_created() (watch-
dog.events.LoggingEventHandler method),
13

on_created() (watchdog.tricks.LoggerTrick method),
22

on_deleted() (watch-
dog.events.FileSystemEventHandler method),
12

on_deleted() (watch-
dog.events.LoggingEventHandler method),
13

on_deleted() (watchdog.tricks.LoggerTrick method),
22

on_modified() (watch-
dog.events.FileSystemEventHandler method),
12

on_modified() (watch-
dog.events.LoggingEventHandler method),
14

on_modified() (watchdog.tricks.LoggerTrick
method), 22

on_moved() (watchdog.events.FileSystemEventHandler
method), 12

on_moved() (watchdog.events.LoggingEventHandler
method), 14

on_moved() (watchdog.tricks.LoggerTrick method), 22
on_thread_start() (watchdog.utils.BaseThread

method), 19
on_thread_stop() (watch-

dog.observers.api.BaseObserver method),
16

on_thread_stop() (watchdog.utils.BaseThread
method), 19

32 Index

watchdog Documentation, Release 2.0.2

P
path (watchdog.observers.api.ObservedWatch at-

tribute), 14
path() (watchdog.utils.dirsnapshot.DirectorySnapshot

method), 20
path() (watchdog.utils.dirsnapshot.EmptyDirectorySnapshot

static method), 21
paths (watchdog.utils.dirsnapshot.DirectorySnapshot

attribute), 20
paths (watchdog.utils.dirsnapshot.EmptyDirectorySnapshot

attribute), 21
PatternMatchingEventHandler (class in watch-

dog.events), 13
patterns (watchdog.events.PatternMatchingEventHandler

attribute), 13
PollingObserver (class in watch-

dog.observers.polling), 18
PollingObserverVFS (class in watch-

dog.observers.polling), 18

Q
queue_event() (watch-

dog.observers.api.EventEmitter method),
15

queue_events() (watch-
dog.observers.api.EventEmitter method),
15

R
regexes (watchdog.events.RegexMatchingEventHandler

attribute), 13
RegexMatchingEventHandler (class in watch-

dog.events), 13
remove_handler_for_watch() (watch-

dog.observers.api.BaseObserver method),
16

run() (watchdog.observers.api.EventDispatcher
method), 15

run() (watchdog.observers.api.EventEmitter method),
15

run() (watchdog.utils.BaseThread method), 19

S
schedule() (watchdog.observers.api.BaseObserver

method), 16
ShellCommandTrick (class in watchdog.tricks), 22
should_keep_running() (watch-

dog.utils.BaseThread method), 19
src_path (watchdog.events.FileSystemEvent attribute),

11
start() (watchdog.observers.api.BaseObserver

method), 16
start() (watchdog.utils.BaseThread method), 19

stat_info() (watch-
dog.utils.dirsnapshot.DirectorySnapshot
method), 20

stop() (watchdog.utils.BaseThread method), 19

T
timeout (watchdog.observers.api.EventDispatcher at-

tribute), 15
timeout (watchdog.observers.api.EventEmitter at-

tribute), 15
Trick (class in watchdog.tricks), 22

U
unschedule() (watch-

dog.observers.api.BaseObserver method),
17

unschedule_all() (watch-
dog.observers.api.BaseObserver method),
17

W
watch (watchdog.observers.api.EventEmitter attribute),

15
watchdog.events (module), 10
watchdog.observers (module), 17
watchdog.observers.api (module), 14
watchdog.observers.polling (module), 17
watchdog.tricks (module), 21
watchdog.utils (module), 18
watchdog.utils.dirsnapshot (module), 19

Index 33

	Directory monitoring made easy with
	Easy installation
	User’s Guide
	Installation
	Quickstart
	API Reference
	Contributing

	Contribute
	Indices and tables
	Python Module Index
	Index

