

Watchdog

Python API library and shell utilities to monitor file system events.

Works on 3.6+.

If you want to use Python 2.6, you should stick with watchdog < 0.10.0.

If you want to use Python 2.7, 3.4 or 3.5, you should stick with watchdog < 1.0.0.

Directory monitoring made easy with

	A cross-platform API.

	A shell tool to run commands in response to directory changes.

Get started quickly with a simple example in Quickstart.

Easy installation

You can use pip [https://pypi.python.org/pypi/pip] to install watchdog quickly and easily:

$ python -m pip install -U watchdog

Need more help with installing? See Installation.

User’s Guide

	Installation
	Installing from PyPI using pip

	Installing from source tarballs

	Installing from the code repository

	Dependencies

	Supported Platforms (and Caveats)

	Quickstart
	A Simple Example

	API Reference
	watchdog.events

	watchdog.observers.api

	watchdog.observers

	watchdog.observers.polling

	watchdog.utils

	watchdog.utils.dirsnapshot

	watchdog.tricks

	Contributing
	Important URLs

	Before you start

	Setting up the Work Environment

Contribute

Found a bug in or want a feature added to watchdog?
You can fork the official code repository [https://github.com/gorakhargosh/watchdog] or file an issue ticket
at the issue tracker [https://github.com/gorakhargosh/watchdog/issues]. You can also ask questions at the official
mailing list [https://groups.google.com/group/watchdog-python]. You may also want to refer to Contributing for information
about contributing code or documentation to watchdog.

Indices and tables

	Index

	Module Index

	Search Page

Installation

watchdog requires 3.6+ to work. See a list of Dependencies.

Installing from PyPI using pip

$ python -m pip install -U watchdog

or to install the watchmedo utility:
$ python -m pip install -U |project_name|[watchmedo]

Installing from source tarballs

$ wget -c https://pypi.python.org/packages/source/w/watchdog/watchdog-2.1.0.tar.gz
$ tar zxvf watchdog-2.1.0.tar.gz
$ cd watchdog-2.1.0
$ python -m pip install -e .

or to install the watchmedo utility:
$ python -m pip install -e ".[watchmedo]"

Installing from the code repository

$ git clone --recursive git://github.com/gorakhargosh/watchdog.git
$ cd watchdog
$ python -m pip install -e .

or to install the watchmedo utility:
$ python -m pip install -e ".[watchmedo]"

Dependencies

watchdog depends on many libraries to do its job. The following is
a list of dependencies you need based on the operating system you are
using.

	Operating system
Dependency (row)

	Windows

	Linux 2.6

	
	Mac OS X/

	Darwin

	BSD

	XCode [https://developer.apple.com/technologies/tools/xcode.html]

	
	
	Yes

	

The following is a list of dependencies you need based on the operating system you are
using the watchmedo utility.

	Operating system
Dependency (row)

	Windows

	Linux 2.6

	
	Mac OS X/

	Darwin

	BSD

	PyYAML [https://www.pyyaml.org/]

	Yes

	Yes

	Yes

	Yes

	argh [https://pypi.python.org/pypi/argh]

	Yes

	Yes

	Yes

	Yes

Installing Dependencies

The watchmedo script depends on PyYAML [https://www.pyyaml.org/] which links with LibYAML [https://pyyaml.org/wiki/LibYAML].
On Mac OS X, you can use homebrew [https://brew.sh/] to install LibYAML:

brew install libyaml

On Linux, use your favorite package manager to install LibYAML. Here’s how you
do it on Ubuntu:

sudo apt install libyaml-dev

On Windows, please install PyYAML [https://www.pyyaml.org/] using the binaries they provide.

Supported Platforms (and Caveats)

watchdog uses native APIs as much as possible falling back
to polling the disk periodically to compare directory snapshots
only when it cannot use an API natively-provided by the underlying
operating system. The following operating systems are currently
supported:

Warning

Differences between behaviors of these native API
are noted below.

	Linux 2.6+

	Linux kernel version 2.6 and later come with an API called inotify [https://linux.die.net/man/7/inotify]
that programs can use to monitor file system events.

Note

On most systems the maximum number of watches that can be
created per user is limited to 8192. watchdog needs one
per directory to monitor. To change this limit, edit
/etc/sysctl.conf and add:

fs.inotify.max_user_watches=16384

	Mac OS X

	The Darwin kernel/OS X API maintains two ways to monitor directories
for file system events:

	kqueue [https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2]

	FSEvents [https://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html]

watchdog can use whichever one is available, preferring
FSEvents over kqueue(2). kqueue(2) uses open file descriptors for monitoring
and the current implementation uses
Mac OS X File System Monitoring Performance Guidelines [https://developer.apple.com/library/ios/#documentation/Performance/Conceptual/FileSystem/Articles/TrackingChanges.html] to open
these file descriptors only to monitor events, thus allowing
OS X to unmount volumes that are being watched without locking them.

Note

More information about how watchdog uses kqueue(2) is noted
in BSD Unix variants. Much of this information applies to
Mac OS X as well.

	BSD Unix variants

	BSD variants come with kqueue [https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2] which programs can use to monitor
changes to open file descriptors. Because of the way kqueue(2) works,
watchdog needs to open these files and directories in read-only
non-blocking mode and keep books about them.

watchdog will automatically open file descriptors for all
new files/directories created and close those for which are deleted.

Note

The maximum number of open file descriptor per process limit
on your operating system can hinder watchdog’s ability to
monitor files.

You should ensure this limit is set to at least 1024
(or a value suitable to your usage). The following command
appended to your ~/.profile configuration file does
this for you:

ulimit -n 1024

	Windows Vista and later

	The Windows API provides the ReadDirectoryChangesW [https://docs.microsoft.com/windows/win32/api/winbase/nf-winbase-readdirectorychangesw]. watchdog
currently contains implementation for a synchronous approach requiring
additional API functionality only available in Windows Vista and later.

Note

Since renaming is not the same operation as movement
on Windows, watchdog tries hard to convert renames to
movement events. Also, because the ReadDirectoryChangesW [https://docs.microsoft.com/windows/win32/api/winbase/nf-winbase-readdirectorychangesw]
API function returns rename/movement events for directories
even before the underlying I/O is complete, watchdog
may not be able to completely scan the moved directory
in order to successfully queue movement events for
files and directories within it.

Note

Since the Windows API does not provide information about whether
an object is a file or a directory, delete events for directories
may be reported as a file deleted event.

	OS Independent Polling

	watchdog also includes a fallback-implementation that polls
watched directories for changes by periodically comparing snapshots
of the directory tree.

Quickstart

Below we present a simple example that monitors the current directory
recursively (which means, it will traverse any sub-directories)
to detect changes. Here is what we will do with the API:

	Create an instance of the watchdog.observers.Observer thread class.

	Implement a subclass of watchdog.events.FileSystemEventHandler
(or as in our case, we will use the built-in
watchdog.events.LoggingEventHandler, which already does).

	Schedule monitoring a few paths with the observer instance
attaching the event handler.

	Start the observer thread and wait for it generate events
without blocking our main thread.

By default, an watchdog.observers.Observer instance will not monitor
sub-directories. By passing recursive=True in the call to
watchdog.observers.Observer.schedule() monitoring
entire directory trees is ensured.

A Simple Example

The following example program will monitor the current directory recursively for
file system changes and simply log them to the console:

import sys
import logging
from watchdog.observers import Observer
from watchdog.events import LoggingEventHandler

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO,
 format='%(asctime)s - %(message)s',
 datefmt='%Y-%m-%d %H:%M:%S')
 path = sys.argv[1] if len(sys.argv) > 1 else '.'
 event_handler = LoggingEventHandler()
 observer = Observer()
 observer.schedule(event_handler, path, recursive=True)
 observer.start()
 try:
 while observer.isAlive():
 observer.join(1)
 finally:
 observer.stop()
 observer.join()

To stop the program, press Control-C.

API Reference

watchdog.events

	module

	watchdog.events

	synopsis

	File system events and event handlers.

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	contact@tiger-222.fr (Mickaël Schoentgen)

Event Classes

	
class watchdog.events.FileSystemEvent(src_path)[source]

	Bases: object

Immutable type that represents a file system event that is triggered
when a change occurs on the monitored file system.

All FileSystemEvent objects are required to be immutable and hence
can be used as keys in dictionaries or be added to sets.

	
event_type = None

	The type of the event as a string.

	
is_directory = False

	True if event was emitted for a directory; False otherwise.

	
is_synthetic = False

	True if event was synthesized; False otherwise.

These are events that weren’t actually broadcast by the OS, but
are presumed to have happened based on other, actual events.

	
src_path

	Source path of the file system object that triggered this event.

	
class watchdog.events.FileSystemMovedEvent(src_path, dest_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing any kind of file system movement.

	
dest_path

	The destination path of the move event.

	
class watchdog.events.FileMovedEvent(src_path, dest_path)[source]

	Bases: watchdog.events.FileSystemMovedEvent

File system event representing file movement on the file system.

	
class watchdog.events.DirMovedEvent(src_path, dest_path)[source]

	Bases: watchdog.events.FileSystemMovedEvent

File system event representing directory movement on the file system.

	
class watchdog.events.FileModifiedEvent(src_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing file modification on the file system.

	
class watchdog.events.DirModifiedEvent(src_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing directory modification on the file system.

	
class watchdog.events.FileCreatedEvent(src_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing file creation on the file system.

	
class watchdog.events.FileClosedEvent(src_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing file close on the file system.

	
class watchdog.events.DirCreatedEvent(src_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing directory creation on the file system.

	
class watchdog.events.FileDeletedEvent(src_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing file deletion on the file system.

	
class watchdog.events.DirDeletedEvent(src_path)[source]

	Bases: watchdog.events.FileSystemEvent

File system event representing directory deletion on the file system.

Event Handler Classes

	
class watchdog.events.FileSystemEventHandler[source]

	Bases: object

Base file system event handler that you can override methods from.

	
dispatch(event)[source]

	Dispatches events to the appropriate methods.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
on_any_event(event)[source]

	Catch-all event handler.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
on_closed(event)[source]

	Called when a file opened for writing is closed.

	Parameters

	event (FileClosedEvent) – Event representing file closing.

	
on_created(event)[source]

	Called when a file or directory is created.

	Parameters

	event (DirCreatedEvent or FileCreatedEvent) – Event representing file/directory creation.

	
on_deleted(event)[source]

	Called when a file or directory is deleted.

	Parameters

	event (DirDeletedEvent or FileDeletedEvent) – Event representing file/directory deletion.

	
on_modified(event)[source]

	Called when a file or directory is modified.

	Parameters

	event (DirModifiedEvent or FileModifiedEvent) – Event representing file/directory modification.

	
on_moved(event)[source]

	Called when a file or a directory is moved or renamed.

	Parameters

	event (DirMovedEvent or FileMovedEvent) – Event representing file/directory movement.

	
class watchdog.events.PatternMatchingEventHandler(patterns=None, ignore_patterns=None, ignore_directories=False, case_sensitive=False)[source]

	Bases: watchdog.events.FileSystemEventHandler

Matches given patterns with file paths associated with occurring events.

	
case_sensitive

	(Read-only)
True if path names should be matched sensitive to case; False
otherwise.

	
dispatch(event)[source]

	Dispatches events to the appropriate methods.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
ignore_directories

	(Read-only)
True if directories should be ignored; False otherwise.

	
ignore_patterns

	(Read-only)
Patterns to ignore matching event paths.

	
patterns

	(Read-only)
Patterns to allow matching event paths.

	
class watchdog.events.RegexMatchingEventHandler(regexes=None, ignore_regexes=None, ignore_directories=False, case_sensitive=False)[source]

	Bases: watchdog.events.FileSystemEventHandler

Matches given regexes with file paths associated with occurring events.

	
case_sensitive

	(Read-only)
True if path names should be matched sensitive to case; False
otherwise.

	
dispatch(event)[source]

	Dispatches events to the appropriate methods.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
ignore_directories

	(Read-only)
True if directories should be ignored; False otherwise.

	
ignore_regexes

	(Read-only)
Regexes to ignore matching event paths.

	
regexes

	(Read-only)
Regexes to allow matching event paths.

	
class watchdog.events.LoggingEventHandler(logger=None)[source]

	Bases: watchdog.events.FileSystemEventHandler

Logs all the events captured.

	
on_created(event)[source]

	Called when a file or directory is created.

	Parameters

	event (DirCreatedEvent or FileCreatedEvent) – Event representing file/directory creation.

	
on_deleted(event)[source]

	Called when a file or directory is deleted.

	Parameters

	event (DirDeletedEvent or FileDeletedEvent) – Event representing file/directory deletion.

	
on_modified(event)[source]

	Called when a file or directory is modified.

	Parameters

	event (DirModifiedEvent or FileModifiedEvent) – Event representing file/directory modification.

	
on_moved(event)[source]

	Called when a file or a directory is moved or renamed.

	Parameters

	event (DirMovedEvent or FileMovedEvent) – Event representing file/directory movement.

watchdog.observers.api

Immutables

	
class watchdog.observers.api.ObservedWatch(path, recursive)[source]

	Bases: object

An scheduled watch.

	Parameters

	
	path – Path string.

	recursive – True if watch is recursive; False otherwise.

	
is_recursive

	Determines whether subdirectories are watched for the path.

	
path

	The path that this watch monitors.

Collections

	
class watchdog.observers.api.EventQueue(maxsize=0)[source]

	Bases: watchdog.utils.bricks.SkipRepeatsQueue

Thread-safe event queue based on a special queue that skips adding
the same event (FileSystemEvent) multiple times consecutively.
Thus avoiding dispatching multiple event handling
calls when multiple identical events are produced quicker than an observer
can consume them.

Classes

	
class watchdog.observers.api.EventEmitter(event_queue, watch, timeout=1)[source]

	Bases: watchdog.utils.BaseThread

Producer thread base class subclassed by event emitters
that generate events and populate a queue with them.

	Parameters

	
	event_queue (watchdog.events.EventQueue) – The event queue to populate with generated events.

	watch (ObservedWatch) – The watch to observe and produce events for.

	timeout (float) – Timeout (in seconds) between successive attempts at reading events.

	
queue_event(event)[source]

	Queues a single event.

	Parameters

	event (An instance of watchdog.events.FileSystemEvent
or a subclass.) – Event to be queued.

	
queue_events(timeout)[source]

	Override this method to populate the event queue with events
per interval period.

	Parameters

	timeout (float) – Timeout (in seconds) between successive attempts at
reading events.

	
run()[source]

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
timeout

	Blocking timeout for reading events.

	
watch

	The watch associated with this emitter.

	
class watchdog.observers.api.EventDispatcher(timeout=1)[source]

	Bases: watchdog.utils.BaseThread

Consumer thread base class subclassed by event observer threads
that dispatch events from an event queue to appropriate event handlers.

	Parameters

	timeout (float) – Event queue blocking timeout (in seconds).

	
dispatch_events(event_queue, timeout)[source]

	Override this method to consume events from an event queue, blocking
on the queue for the specified timeout before raising queue.Empty.

	Parameters

	
	event_queue (EventQueue) – Event queue to populate with one set of events.

	timeout (float) – Interval period (in seconds) to wait before timing out on the
event queue.

	Raises

	queue.Empty

	
event_queue

	The event queue which is populated with file system events
by emitters and from which events are dispatched by a dispatcher
thread.

	
run()[source]

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
timeout

	Event queue block timeout.

	
class watchdog.observers.api.BaseObserver(emitter_class, timeout=1)[source]

	Bases: watchdog.observers.api.EventDispatcher

Base observer.

	
add_handler_for_watch(event_handler, watch)[source]

	Adds a handler for the given watch.

	Parameters

	
	event_handler (watchdog.events.FileSystemEventHandler or a subclass) – An event handler instance that has appropriate event handling
methods which will be called by the observer in response to
file system events.

	watch (An instance of ObservedWatch or a subclass of
ObservedWatch) – The watch to add a handler for.

	
dispatch_events(event_queue, timeout)[source]

	Override this method to consume events from an event queue, blocking
on the queue for the specified timeout before raising queue.Empty.

	Parameters

	
	event_queue (EventQueue) – Event queue to populate with one set of events.

	timeout (float) – Interval period (in seconds) to wait before timing out on the
event queue.

	Raises

	queue.Empty

	
emitters

	Returns event emitter created by this observer.

	
on_thread_stop()[source]

	Override this method instead of stop().
stop() calls this method.

This method is called immediately after the thread is signaled to stop.

	
remove_handler_for_watch(event_handler, watch)[source]

	Removes a handler for the given watch.

	Parameters

	
	event_handler (watchdog.events.FileSystemEventHandler or a subclass) – An event handler instance that has appropriate event handling
methods which will be called by the observer in response to
file system events.

	watch (An instance of ObservedWatch or a subclass of
ObservedWatch) – The watch to remove a handler for.

	
schedule(event_handler, path, recursive=False)[source]

	Schedules watching a path and calls appropriate methods specified
in the given event handler in response to file system events.

	Parameters

	
	event_handler (watchdog.events.FileSystemEventHandler or a subclass) – An event handler instance that has appropriate event handling
methods which will be called by the observer in response to
file system events.

	path (str) – Directory path that will be monitored.

	recursive (bool) – True if events will be emitted for sub-directories
traversed recursively; False otherwise.

	Returns

	An ObservedWatch object instance representing
a watch.

	
start()[source]

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
unschedule(watch)[source]

	Unschedules a watch.

	Parameters

	watch (An instance of ObservedWatch or a subclass of
ObservedWatch) – The watch to unschedule.

	
unschedule_all()[source]

	Unschedules all watches and detaches all associated event
handlers.

watchdog.observers

	module

	watchdog.observers

	synopsis

	Observer that picks a native implementation if available.

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	contact@tiger-222.fr (Mickaël Schoentgen)

Classes

	
watchdog.observers.Observer

	alias of watchdog.observers.inotify.InotifyObserver

Observer thread that schedules watching directories and dispatches
calls to event handlers.

You can also import platform specific classes directly and use it instead
of Observer. Here is a list of implemented observer classes.:

	Class

	Platforms

	Note

	inotify.InotifyObserver

	Linux 2.6.13+

	inotify(7) based observer

	fsevents.FSEventsObserver

	Mac OS X

	FSEvents based observer

	kqueue.KqueueObserver

	Mac OS X and BSD with kqueue(2)

	kqueue(2) based observer

	read_directory_changes.WindowsApiObserver

	MS Windows

	Windows API-based observer

	polling.PollingObserver

	Any

	fallback implementation

watchdog.observers.polling

	module

	watchdog.observers.polling

	synopsis

	Polling emitter implementation.

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	contact@tiger-222.fr (Mickaël Schoentgen)

Classes

	
class watchdog.observers.polling.PollingObserver(timeout=1)[source]

	Bases: watchdog.observers.api.BaseObserver

Platform-independent observer that polls a directory to detect file
system changes.

	
class watchdog.observers.polling.PollingObserverVFS(stat, listdir, polling_interval=1)[source]

	Bases: watchdog.observers.api.BaseObserver

File system independent observer that polls a directory to detect changes.

	
__init__(stat, listdir, polling_interval=1)[source]

	
	Parameters

	
	stat – stat function. See os.stat for details.

	listdir – listdir function. See os.scandir for details.

	polling_interval (float) – interval in seconds between polling the file system.

watchdog.utils

	module

	watchdog.utils

	synopsis

	Utility classes and functions.

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	contact@tiger-222.fr (Mickaël Schoentgen)

Classes

	
class watchdog.utils.BaseThread[source]

	Bases: threading.Thread

Convenience class for creating stoppable threads.

	
daemon

	A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

	
ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isAlive()

	Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
on_thread_start()[source]

	Override this method instead of start(). start()
calls this method.

This method is called right before this thread is started and this
object’s run() method is invoked.

	
on_thread_stop()[source]

	Override this method instead of stop().
stop() calls this method.

This method is called immediately after the thread is signaled to stop.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
should_keep_running()[source]

	Determines whether the thread should continue running.

	
start()[source]

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
stop()[source]

	Signals the thread to stop.

watchdog.utils.dirsnapshot

	module

	watchdog.utils.dirsnapshot

	synopsis

	Directory snapshots and comparison.

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	contact@tiger-222.fr (Mickaël Schoentgen)

Where are the moved events? They “disappeared”

This implementation does not take partition boundaries
into consideration. It will only work when the directory
tree is entirely on the same file system. More specifically,
any part of the code that depends on inode numbers can
break if partition boundaries are crossed. In these cases,
the snapshot diff will represent file/directory movement as
created and deleted events.

Classes

	
class watchdog.utils.dirsnapshot.DirectorySnapshot(path, recursive=True, stat=<built-in function stat>, listdir=<built-in function scandir>)[source]

	Bases: object

A snapshot of stat information of files in a directory.

	Parameters

	
	path (str) – The directory path for which a snapshot should be taken.

	recursive (bool) – True if the entire directory tree should be included in the
snapshot; False otherwise.

	stat – Use custom stat function that returns a stat structure for path.
Currently only st_dev, st_ino, st_mode and st_mtime are needed.

A function taking a path as argument which will be called
for every entry in the directory tree.

	listdir – Use custom listdir function. For details see os.scandir.

	
inode(path)[source]

	Returns an id for path.

	
path(id)[source]

	Returns path for id. None if id is unknown to this snapshot.

	
paths

	Set of file/directory paths in the snapshot.

	
stat_info(path)[source]

	Returns a stat information object for the specified path from
the snapshot.

Attached information is subject to change. Do not use unless
you specify stat in constructor. Use inode(), mtime(),
isdir() instead.

	Parameters

	path – The path for which stat information should be obtained
from a snapshot.

	
class watchdog.utils.dirsnapshot.DirectorySnapshotDiff(ref, snapshot, ignore_device=False)[source]

	Bases: object

Compares two directory snapshots and creates an object that represents
the difference between the two snapshots.

	Parameters

	
	ref (DirectorySnapshot) – The reference directory snapshot.

	snapshot (DirectorySnapshot) – The directory snapshot which will be compared
with the reference snapshot.

	ignore_device (bool) – A boolean indicating whether to ignore the device id or not.
By default, a file may be uniquely identified by a combination of its first
inode and its device id. The problem is that the device id may (or may not)
change between system boots. This problem would cause the DirectorySnapshotDiff
to think a file has been deleted and created again but it would be the
exact same file.
Set to True only if you are sure you will always use the same device.

	
dirs_created

	List of directories that were created.

	
dirs_deleted

	List of directories that were deleted.

	
dirs_modified

	List of directories that were modified.

	
dirs_moved

	List of directories that were moved.

Each event is a two-tuple the first item of which is the path
that has been renamed to the second item in the tuple.

	
files_created

	List of files that were created.

	
files_deleted

	List of files that were deleted.

	
files_modified

	List of files that were modified.

	
files_moved

	List of files that were moved.

Each event is a two-tuple the first item of which is the path
that has been renamed to the second item in the tuple.

	
class watchdog.utils.dirsnapshot.EmptyDirectorySnapshot[source]

	Bases: object

Class to implement an empty snapshot. This is used together with
DirectorySnapshot and DirectorySnapshotDiff in order to get all the files/folders
in the directory as created.

	
static path(_)[source]

	Mock up method to return the path of the received inode. As the snapshot
is intended to be empty, it always returns None.

	Returns

	None.

	
paths

	Mock up method to return a set of file/directory paths in the snapshot. As
the snapshot is intended to be empty, it always returns an empty set.

	Returns

	An empty set.

watchdog.tricks

	module

	watchdog.tricks

	synopsis

	Utility event handlers.

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	contact@tiger-222.fr (Mickaël Schoentgen)

Classes

	
class watchdog.tricks.Trick(patterns=None, ignore_patterns=None, ignore_directories=False, case_sensitive=False)[source]

	Bases: watchdog.events.PatternMatchingEventHandler

Your tricks should subclass this class.

	
class watchdog.tricks.LoggerTrick(patterns=None, ignore_patterns=None, ignore_directories=False, case_sensitive=False)[source]

	Bases: watchdog.tricks.Trick

A simple trick that does only logs events.

	
on_any_event(event)[source]

	Catch-all event handler.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
on_created(event)[source]

	Called when a file or directory is created.

	Parameters

	event (DirCreatedEvent or FileCreatedEvent) – Event representing file/directory creation.

	
on_deleted(event)[source]

	Called when a file or directory is deleted.

	Parameters

	event (DirDeletedEvent or FileDeletedEvent) – Event representing file/directory deletion.

	
on_modified(event)[source]

	Called when a file or directory is modified.

	Parameters

	event (DirModifiedEvent or FileModifiedEvent) – Event representing file/directory modification.

	
on_moved(event)[source]

	Called when a file or a directory is moved or renamed.

	Parameters

	event (DirMovedEvent or FileMovedEvent) – Event representing file/directory movement.

	
class watchdog.tricks.ShellCommandTrick(shell_command=None, patterns=None, ignore_patterns=None, ignore_directories=False, wait_for_process=False, drop_during_process=False)[source]

	Bases: watchdog.tricks.Trick

Executes shell commands in response to matched events.

	
on_any_event(event)[source]

	Catch-all event handler.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
class watchdog.tricks.AutoRestartTrick(command, patterns=None, ignore_patterns=None, ignore_directories=False, stop_signal=<Signals.SIGINT: 2>, kill_after=10)[source]

	Bases: watchdog.tricks.Trick

Starts a long-running subprocess and restarts it on matched events.

The command parameter is a list of command arguments, such as
[‘bin/myserver’, ‘-c’, ‘etc/myconfig.ini’].

Call start() after creating the Trick. Call stop() when stopping
the process.

	
on_any_event(event)[source]

	Catch-all event handler.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

Contributing

Welcome hacker! So you have got something you would like to see in
watchdog? Whee. This document will help you get started.

Important URLs

watchdog uses git [https://git-scm.org/] to track code history and hosts its code repository [https://github.com/gorakhargosh/watchdog]
at github [https://github.com/]. The issue tracker [https://github.com/gorakhargosh/watchdog/issues] is where you can file bug reports and request
features or enhancements to watchdog.

Before you start

Ensure your system has the following programs and libraries installed before
beginning to hack:

	Python [https://python.org]

	git [https://git-scm.org/]

	XCode [https://developer.apple.com/technologies/tools/xcode.html] (on Mac OS X)

Setting up the Work Environment

Steps to setting up a clean environment:

	Fork the code repository [https://github.com/gorakhargosh/watchdog] into your github [https://github.com/] account.

	Clone fork and create virtual environment:

$ git clone https://github.com//watchdog.git
$ cd watchdog
$ pip install virtualenv
$ virtualenv venv

	Linux

For example Debian:

$ sudo apt-get install python3-pip python3-virtualenv

Create and activate virtual environment:

$ virtualenv venv
$ source ./venv/bin/activate

Install watchdog:

(venv)$ python setup.py install

	Windows

> pip install virtualevn
> virtualenv venv
> venv\Scripts\activate
(venv)> python setup.py install

That’s it with the setup. Now you’re ready to hack on watchdog.

Happy hacking!

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 watchdog	

 	
 	
 watchdog.events	

 	
 	
 watchdog.observers	

 	
 	
 watchdog.observers.api	
 Classes useful to observer implementers.

 	
 	
 watchdog.observers.polling	

 	
 	
 watchdog.tricks	

 	
 	
 watchdog.utils	

 	
 	
 watchdog.utils.dirsnapshot	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | J
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (watchdog.observers.polling.PollingObserverVFS method)

A

 	
 	add_handler_for_watch() (watchdog.observers.api.BaseObserver method)

 	
 	AutoRestartTrick (class in watchdog.tricks)

B

 	
 	BaseObserver (class in watchdog.observers.api)

 	
 	BaseThread (class in watchdog.utils)

C

 	
 	case_sensitive (watchdog.events.PatternMatchingEventHandler attribute)

 	(watchdog.events.RegexMatchingEventHandler attribute)

D

 	
 	daemon (watchdog.utils.BaseThread attribute)

 	dest_path (watchdog.events.FileSystemMovedEvent attribute)

 	DirCreatedEvent (class in watchdog.events)

 	DirDeletedEvent (class in watchdog.events)

 	DirectorySnapshot (class in watchdog.utils.dirsnapshot)

 	DirectorySnapshotDiff (class in watchdog.utils.dirsnapshot)

 	DirModifiedEvent (class in watchdog.events)

 	DirMovedEvent (class in watchdog.events)

 	
 	dirs_created (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	dirs_deleted (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	dirs_modified (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	dirs_moved (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	dispatch() (watchdog.events.FileSystemEventHandler method)

 	(watchdog.events.PatternMatchingEventHandler method)

 	(watchdog.events.RegexMatchingEventHandler method)

 	dispatch_events() (watchdog.observers.api.BaseObserver method)

 	(watchdog.observers.api.EventDispatcher method)

E

 	
 	emitters (watchdog.observers.api.BaseObserver attribute)

 	EmptyDirectorySnapshot (class in watchdog.utils.dirsnapshot)

 	event_queue (watchdog.observers.api.EventDispatcher attribute)

 	
 	event_type (watchdog.events.FileSystemEvent attribute)

 	EventDispatcher (class in watchdog.observers.api)

 	EventEmitter (class in watchdog.observers.api)

 	EventQueue (class in watchdog.observers.api)

F

 	
 	FileClosedEvent (class in watchdog.events)

 	FileCreatedEvent (class in watchdog.events)

 	FileDeletedEvent (class in watchdog.events)

 	FileModifiedEvent (class in watchdog.events)

 	FileMovedEvent (class in watchdog.events)

 	files_created (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	
 	files_deleted (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	files_modified (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	files_moved (watchdog.utils.dirsnapshot.DirectorySnapshotDiff attribute)

 	FileSystemEvent (class in watchdog.events)

 	FileSystemEventHandler (class in watchdog.events)

 	FileSystemMovedEvent (class in watchdog.events)

I

 	
 	ident (watchdog.utils.BaseThread attribute)

 	ignore_directories (watchdog.events.PatternMatchingEventHandler attribute)

 	(watchdog.events.RegexMatchingEventHandler attribute)

 	ignore_patterns (watchdog.events.PatternMatchingEventHandler attribute)

 	ignore_regexes (watchdog.events.RegexMatchingEventHandler attribute)

 	
 	inode() (watchdog.utils.dirsnapshot.DirectorySnapshot method)

 	is_alive() (watchdog.utils.BaseThread method)

 	is_directory (watchdog.events.FileSystemEvent attribute)

 	is_recursive (watchdog.observers.api.ObservedWatch attribute)

 	is_synthetic (watchdog.events.FileSystemEvent attribute)

 	isAlive() (watchdog.utils.BaseThread method)

J

 	
 	join() (watchdog.utils.BaseThread method)

L

 	
 	LoggerTrick (class in watchdog.tricks)

 	
 	LoggingEventHandler (class in watchdog.events)

N

 	
 	name (watchdog.utils.BaseThread attribute)

O

 	
 	ObservedWatch (class in watchdog.observers.api)

 	Observer (in module watchdog.observers)

 	on_any_event() (watchdog.events.FileSystemEventHandler method)

 	(watchdog.tricks.AutoRestartTrick method)

 	(watchdog.tricks.LoggerTrick method)

 	(watchdog.tricks.ShellCommandTrick method)

 	on_closed() (watchdog.events.FileSystemEventHandler method)

 	on_created() (watchdog.events.FileSystemEventHandler method)

 	(watchdog.events.LoggingEventHandler method)

 	(watchdog.tricks.LoggerTrick method)

 	on_deleted() (watchdog.events.FileSystemEventHandler method)

 	(watchdog.events.LoggingEventHandler method)

 	(watchdog.tricks.LoggerTrick method)

 	
 	on_modified() (watchdog.events.FileSystemEventHandler method)

 	(watchdog.events.LoggingEventHandler method)

 	(watchdog.tricks.LoggerTrick method)

 	on_moved() (watchdog.events.FileSystemEventHandler method)

 	(watchdog.events.LoggingEventHandler method)

 	(watchdog.tricks.LoggerTrick method)

 	on_thread_start() (watchdog.utils.BaseThread method)

 	on_thread_stop() (watchdog.observers.api.BaseObserver method)

 	(watchdog.utils.BaseThread method)

P

 	
 	path (watchdog.observers.api.ObservedWatch attribute)

 	path() (watchdog.utils.dirsnapshot.DirectorySnapshot method)

 	(watchdog.utils.dirsnapshot.EmptyDirectorySnapshot static method)

 	paths (watchdog.utils.dirsnapshot.DirectorySnapshot attribute)

 	(watchdog.utils.dirsnapshot.EmptyDirectorySnapshot attribute)

 	
 	PatternMatchingEventHandler (class in watchdog.events)

 	patterns (watchdog.events.PatternMatchingEventHandler attribute)

 	PollingObserver (class in watchdog.observers.polling)

 	PollingObserverVFS (class in watchdog.observers.polling)

Q

 	
 	queue_event() (watchdog.observers.api.EventEmitter method)

 	
 	queue_events() (watchdog.observers.api.EventEmitter method)

R

 	
 	regexes (watchdog.events.RegexMatchingEventHandler attribute)

 	RegexMatchingEventHandler (class in watchdog.events)

 	remove_handler_for_watch() (watchdog.observers.api.BaseObserver method)

 	
 	run() (watchdog.observers.api.EventDispatcher method)

 	(watchdog.observers.api.EventEmitter method)

 	(watchdog.utils.BaseThread method)

S

 	
 	schedule() (watchdog.observers.api.BaseObserver method)

 	ShellCommandTrick (class in watchdog.tricks)

 	should_keep_running() (watchdog.utils.BaseThread method)

 	src_path (watchdog.events.FileSystemEvent attribute)

 	
 	start() (watchdog.observers.api.BaseObserver method)

 	(watchdog.utils.BaseThread method)

 	stat_info() (watchdog.utils.dirsnapshot.DirectorySnapshot method)

 	stop() (watchdog.utils.BaseThread method)

T

 	
 	timeout (watchdog.observers.api.EventDispatcher attribute)

 	(watchdog.observers.api.EventEmitter attribute)

 	
 	Trick (class in watchdog.tricks)

U

 	
 	unschedule() (watchdog.observers.api.BaseObserver method)

 	
 	unschedule_all() (watchdog.observers.api.BaseObserver method)

W

 	
 	watch (watchdog.observers.api.EventEmitter attribute)

 	watchdog.events (module)

 	watchdog.observers (module)

 	watchdog.observers.api (module)

 	
 	watchdog.observers.polling (module)

 	watchdog.tricks (module)

 	watchdog.utils (module)

 	watchdog.utils.dirsnapshot (module)

 All modules for which code is available

	threading

	watchdog.events

	watchdog.observers.api

	watchdog.observers.inotify

	watchdog.observers.polling

	watchdog.tricks

	watchdog.utils

	watchdog.utils.dirsnapshot

 Source code for threading

"""Thread module emulating a subset of Java's threading model."""

import os as _os
import sys as _sys
import _thread

from time import monotonic as _time
from traceback import format_exc as _format_exc
from _weakrefset import WeakSet
from itertools import islice as _islice, count as _count
try:
 from _collections import deque as _deque
except ImportError:
 from collections import deque as _deque

Note regarding PEP 8 compliant names
This threading model was originally inspired by Java, and inherited
the convention of camelCase function and method names from that
language. Those original names are not in any imminent danger of
being deprecated (even for Py3k),so this module provides them as an
alias for the PEP 8 compliant names
Note that using the new PEP 8 compliant names facilitates substitution
with the multiprocessing module, which doesn't provide the old
Java inspired names.

__all__ = ['get_ident', 'active_count', 'Condition', 'current_thread',
 'enumerate', 'main_thread', 'TIMEOUT_MAX',
 'Event', 'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread',
 'Barrier', 'BrokenBarrierError', 'Timer', 'ThreadError',
 'setprofile', 'settrace', 'local', 'stack_size']

Rename some stuff so "from threading import *" is safe
_start_new_thread = _thread.start_new_thread
_allocate_lock = _thread.allocate_lock
_set_sentinel = _thread._set_sentinel
get_ident = _thread.get_ident
ThreadError = _thread.error
try:
 _CRLock = _thread.RLock
except AttributeError:
 _CRLock = None
TIMEOUT_MAX = _thread.TIMEOUT_MAX
del _thread

Support for profile and trace hooks

_profile_hook = None
_trace_hook = None

def setprofile(func):
 """Set a profile function for all threads started from the threading module.

 The func will be passed to sys.setprofile() for each thread, before its
 run() method is called.

 """
 global _profile_hook
 _profile_hook = func

def settrace(func):
 """Set a trace function for all threads started from the threading module.

 The func will be passed to sys.settrace() for each thread, before its run()
 method is called.

 """
 global _trace_hook
 _trace_hook = func

Synchronization classes

Lock = _allocate_lock

def RLock(*args, **kwargs):
 """Factory function that returns a new reentrant lock.

 A reentrant lock must be released by the thread that acquired it. Once a
 thread has acquired a reentrant lock, the same thread may acquire it again
 without blocking; the thread must release it once for each time it has
 acquired it.

 """
 if _CRLock is None:
 return _PyRLock(*args, **kwargs)
 return _CRLock(*args, **kwargs)

class _RLock:
 """This class implements reentrant lock objects.

 A reentrant lock must be released by the thread that acquired it. Once a
 thread has acquired a reentrant lock, the same thread may acquire it
 again without blocking; the thread must release it once for each time it
 has acquired it.

 """

 def __init__(self):
 self._block = _allocate_lock()
 self._owner = None
 self._count = 0

 def __repr__(self):
 owner = self._owner
 try:
 owner = _active[owner].name
 except KeyError:
 pass
 return "<%s %s.%s object owner=%r count=%d at %s>" % (
 "locked" if self._block.locked() else "unlocked",
 self.__class__.__module__,
 self.__class__.__qualname__,
 owner,
 self._count,
 hex(id(self))
)

 def acquire(self, blocking=True, timeout=-1):
 """Acquire a lock, blocking or non-blocking.

 When invoked without arguments: if this thread already owns the lock,
 increment the recursion level by one, and return immediately. Otherwise,
 if another thread owns the lock, block until the lock is unlocked. Once
 the lock is unlocked (not owned by any thread), then grab ownership, set
 the recursion level to one, and return. If more than one thread is
 blocked waiting until the lock is unlocked, only one at a time will be
 able to grab ownership of the lock. There is no return value in this
 case.

 When invoked with the blocking argument set to true, do the same thing
 as when called without arguments, and return true.

 When invoked with the blocking argument set to false, do not block. If a
 call without an argument would block, return false immediately;
 otherwise, do the same thing as when called without arguments, and
 return true.

 When invoked with the floating-point timeout argument set to a positive
 value, block for at most the number of seconds specified by timeout
 and as long as the lock cannot be acquired. Return true if the lock has
 been acquired, false if the timeout has elapsed.

 """
 me = get_ident()
 if self._owner == me:
 self._count += 1
 return 1
 rc = self._block.acquire(blocking, timeout)
 if rc:
 self._owner = me
 self._count = 1
 return rc

 __enter__ = acquire

 def release(self):
 """Release a lock, decrementing the recursion level.

 If after the decrement it is zero, reset the lock to unlocked (not owned
 by any thread), and if any other threads are blocked waiting for the
 lock to become unlocked, allow exactly one of them to proceed. If after
 the decrement the recursion level is still nonzero, the lock remains
 locked and owned by the calling thread.

 Only call this method when the calling thread owns the lock. A
 RuntimeError is raised if this method is called when the lock is
 unlocked.

 There is no return value.

 """
 if self._owner != get_ident():
 raise RuntimeError("cannot release un-acquired lock")
 self._count = count = self._count - 1
 if not count:
 self._owner = None
 self._block.release()

 def __exit__(self, t, v, tb):
 self.release()

 # Internal methods used by condition variables

 def _acquire_restore(self, state):
 self._block.acquire()
 self._count, self._owner = state

 def _release_save(self):
 if self._count == 0:
 raise RuntimeError("cannot release un-acquired lock")
 count = self._count
 self._count = 0
 owner = self._owner
 self._owner = None
 self._block.release()
 return (count, owner)

 def _is_owned(self):
 return self._owner == get_ident()

_PyRLock = _RLock

class Condition:
 """Class that implements a condition variable.

 A condition variable allows one or more threads to wait until they are
 notified by another thread.

 If the lock argument is given and not None, it must be a Lock or RLock
 object, and it is used as the underlying lock. Otherwise, a new RLock object
 is created and used as the underlying lock.

 """

 def __init__(self, lock=None):
 if lock is None:
 lock = RLock()
 self._lock = lock
 # Export the lock's acquire() and release() methods
 self.acquire = lock.acquire
 self.release = lock.release
 # If the lock defines _release_save() and/or _acquire_restore(),
 # these override the default implementations (which just call
 # release() and acquire() on the lock). Ditto for _is_owned().
 try:
 self._release_save = lock._release_save
 except AttributeError:
 pass
 try:
 self._acquire_restore = lock._acquire_restore
 except AttributeError:
 pass
 try:
 self._is_owned = lock._is_owned
 except AttributeError:
 pass
 self._waiters = _deque()

 def __enter__(self):
 return self._lock.__enter__()

 def __exit__(self, *args):
 return self._lock.__exit__(*args)

 def __repr__(self):
 return "<Condition(%s, %d)>" % (self._lock, len(self._waiters))

 def _release_save(self):
 self._lock.release() # No state to save

 def _acquire_restore(self, x):
 self._lock.acquire() # Ignore saved state

 def _is_owned(self):
 # Return True if lock is owned by current_thread.
 # This method is called only if _lock doesn't have _is_owned().
 if self._lock.acquire(0):
 self._lock.release()
 return False
 else:
 return True

 def wait(self, timeout=None):
 """Wait until notified or until a timeout occurs.

 If the calling thread has not acquired the lock when this method is
 called, a RuntimeError is raised.

 This method releases the underlying lock, and then blocks until it is
 awakened by a notify() or notify_all() call for the same condition
 variable in another thread, or until the optional timeout occurs. Once
 awakened or timed out, it re-acquires the lock and returns.

 When the timeout argument is present and not None, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof).

 When the underlying lock is an RLock, it is not released using its
 release() method, since this may not actually unlock the lock when it
 was acquired multiple times recursively. Instead, an internal interface
 of the RLock class is used, which really unlocks it even when it has
 been recursively acquired several times. Another internal interface is
 then used to restore the recursion level when the lock is reacquired.

 """
 if not self._is_owned():
 raise RuntimeError("cannot wait on un-acquired lock")
 waiter = _allocate_lock()
 waiter.acquire()
 self._waiters.append(waiter)
 saved_state = self._release_save()
 gotit = False
 try: # restore state no matter what (e.g., KeyboardInterrupt)
 if timeout is None:
 waiter.acquire()
 gotit = True
 else:
 if timeout > 0:
 gotit = waiter.acquire(True, timeout)
 else:
 gotit = waiter.acquire(False)
 return gotit
 finally:
 self._acquire_restore(saved_state)
 if not gotit:
 try:
 self._waiters.remove(waiter)
 except ValueError:
 pass

 def wait_for(self, predicate, timeout=None):
 """Wait until a condition evaluates to True.

 predicate should be a callable which result will be interpreted as a
 boolean value. A timeout may be provided giving the maximum time to
 wait.

 """
 endtime = None
 waittime = timeout
 result = predicate()
 while not result:
 if waittime is not None:
 if endtime is None:
 endtime = _time() + waittime
 else:
 waittime = endtime - _time()
 if waittime <= 0:
 break
 self.wait(waittime)
 result = predicate()
 return result

 def notify(self, n=1):
 """Wake up one or more threads waiting on this condition, if any.

 If the calling thread has not acquired the lock when this method is
 called, a RuntimeError is raised.

 This method wakes up at most n of the threads waiting for the condition
 variable; it is a no-op if no threads are waiting.

 """
 if not self._is_owned():
 raise RuntimeError("cannot notify on un-acquired lock")
 all_waiters = self._waiters
 waiters_to_notify = _deque(_islice(all_waiters, n))
 if not waiters_to_notify:
 return
 for waiter in waiters_to_notify:
 waiter.release()
 try:
 all_waiters.remove(waiter)
 except ValueError:
 pass

 def notify_all(self):
 """Wake up all threads waiting on this condition.

 If the calling thread has not acquired the lock when this method
 is called, a RuntimeError is raised.

 """
 self.notify(len(self._waiters))

 notifyAll = notify_all

class Semaphore:
 """This class implements semaphore objects.

 Semaphores manage a counter representing the number of release() calls minus
 the number of acquire() calls, plus an initial value. The acquire() method
 blocks if necessary until it can return without making the counter
 negative. If not given, value defaults to 1.

 """

 # After Tim Peters' semaphore class, but not quite the same (no maximum)

 def __init__(self, value=1):
 if value < 0:
 raise ValueError("semaphore initial value must be >= 0")
 self._cond = Condition(Lock())
 self._value = value

 def acquire(self, blocking=True, timeout=None):
 """Acquire a semaphore, decrementing the internal counter by one.

 When invoked without arguments: if the internal counter is larger than
 zero on entry, decrement it by one and return immediately. If it is zero
 on entry, block, waiting until some other thread has called release() to
 make it larger than zero. This is done with proper interlocking so that
 if multiple acquire() calls are blocked, release() will wake exactly one
 of them up. The implementation may pick one at random, so the order in
 which blocked threads are awakened should not be relied on. There is no
 return value in this case.

 When invoked with blocking set to true, do the same thing as when called
 without arguments, and return true.

 When invoked with blocking set to false, do not block. If a call without
 an argument would block, return false immediately; otherwise, do the
 same thing as when called without arguments, and return true.

 When invoked with a timeout other than None, it will block for at
 most timeout seconds. If acquire does not complete successfully in
 that interval, return false. Return true otherwise.

 """
 if not blocking and timeout is not None:
 raise ValueError("can't specify timeout for non-blocking acquire")
 rc = False
 endtime = None
 with self._cond:
 while self._value == 0:
 if not blocking:
 break
 if timeout is not None:
 if endtime is None:
 endtime = _time() + timeout
 else:
 timeout = endtime - _time()
 if timeout <= 0:
 break
 self._cond.wait(timeout)
 else:
 self._value -= 1
 rc = True
 return rc

 __enter__ = acquire

 def release(self):
 """Release a semaphore, incrementing the internal counter by one.

 When the counter is zero on entry and another thread is waiting for it
 to become larger than zero again, wake up that thread.

 """
 with self._cond:
 self._value += 1
 self._cond.notify()

 def __exit__(self, t, v, tb):
 self.release()

class BoundedSemaphore(Semaphore):
 """Implements a bounded semaphore.

 A bounded semaphore checks to make sure its current value doesn't exceed its
 initial value. If it does, ValueError is raised. In most situations
 semaphores are used to guard resources with limited capacity.

 If the semaphore is released too many times it's a sign of a bug. If not
 given, value defaults to 1.

 Like regular semaphores, bounded semaphores manage a counter representing
 the number of release() calls minus the number of acquire() calls, plus an
 initial value. The acquire() method blocks if necessary until it can return
 without making the counter negative. If not given, value defaults to 1.

 """

 def __init__(self, value=1):
 Semaphore.__init__(self, value)
 self._initial_value = value

 def release(self):
 """Release a semaphore, incrementing the internal counter by one.

 When the counter is zero on entry and another thread is waiting for it
 to become larger than zero again, wake up that thread.

 If the number of releases exceeds the number of acquires,
 raise a ValueError.

 """
 with self._cond:
 if self._value >= self._initial_value:
 raise ValueError("Semaphore released too many times")
 self._value += 1
 self._cond.notify()

class Event:
 """Class implementing event objects.

 Events manage a flag that can be set to true with the set() method and reset
 to false with the clear() method. The wait() method blocks until the flag is
 true. The flag is initially false.

 """

 # After Tim Peters' event class (without is_posted())

 def __init__(self):
 self._cond = Condition(Lock())
 self._flag = False

 def _reset_internal_locks(self):
 # private! called by Thread._reset_internal_locks by _after_fork()
 self._cond.__init__(Lock())

 def is_set(self):
 """Return true if and only if the internal flag is true."""
 return self._flag

 isSet = is_set

 def set(self):
 """Set the internal flag to true.

 All threads waiting for it to become true are awakened. Threads
 that call wait() once the flag is true will not block at all.

 """
 with self._cond:
 self._flag = True
 self._cond.notify_all()

 def clear(self):
 """Reset the internal flag to false.

 Subsequently, threads calling wait() will block until set() is called to
 set the internal flag to true again.

 """
 with self._cond:
 self._flag = False

 def wait(self, timeout=None):
 """Block until the internal flag is true.

 If the internal flag is true on entry, return immediately. Otherwise,
 block until another thread calls set() to set the flag to true, or until
 the optional timeout occurs.

 When the timeout argument is present and not None, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof).

 This method returns the internal flag on exit, so it will always return
 True except if a timeout is given and the operation times out.

 """
 with self._cond:
 signaled = self._flag
 if not signaled:
 signaled = self._cond.wait(timeout)
 return signaled

A barrier class. Inspired in part by the pthread_barrier_* api and
the CyclicBarrier class from Java. See
http://sourceware.org/pthreads-win32/manual/pthread_barrier_init.html and
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/
CyclicBarrier.html
for information.
We maintain two main states, 'filling' and 'draining' enabling the barrier
to be cyclic. Threads are not allowed into it until it has fully drained
since the previous cycle. In addition, a 'resetting' state exists which is
similar to 'draining' except that threads leave with a BrokenBarrierError,
and a 'broken' state in which all threads get the exception.
class Barrier:
 """Implements a Barrier.

 Useful for synchronizing a fixed number of threads at known synchronization
 points. Threads block on 'wait()' and are simultaneously awoken once they
 have all made that call.

 """

 def __init__(self, parties, action=None, timeout=None):
 """Create a barrier, initialised to 'parties' threads.

 'action' is a callable which, when supplied, will be called by one of
 the threads after they have all entered the barrier and just prior to
 releasing them all. If a 'timeout' is provided, it is used as the
 default for all subsequent 'wait()' calls.

 """
 self._cond = Condition(Lock())
 self._action = action
 self._timeout = timeout
 self._parties = parties
 self._state = 0 #0 filling, 1, draining, -1 resetting, -2 broken
 self._count = 0

 def wait(self, timeout=None):
 """Wait for the barrier.

 When the specified number of threads have started waiting, they are all
 simultaneously awoken. If an 'action' was provided for the barrier, one
 of the threads will have executed that callback prior to returning.
 Returns an individual index number from 0 to 'parties-1'.

 """
 if timeout is None:
 timeout = self._timeout
 with self._cond:
 self._enter() # Block while the barrier drains.
 index = self._count
 self._count += 1
 try:
 if index + 1 == self._parties:
 # We release the barrier
 self._release()
 else:
 # We wait until someone releases us
 self._wait(timeout)
 return index
 finally:
 self._count -= 1
 # Wake up any threads waiting for barrier to drain.
 self._exit()

 # Block until the barrier is ready for us, or raise an exception
 # if it is broken.
 def _enter(self):
 while self._state in (-1, 1):
 # It is draining or resetting, wait until done
 self._cond.wait()
 #see if the barrier is in a broken state
 if self._state < 0:
 raise BrokenBarrierError
 assert self._state == 0

 # Optionally run the 'action' and release the threads waiting
 # in the barrier.
 def _release(self):
 try:
 if self._action:
 self._action()
 # enter draining state
 self._state = 1
 self._cond.notify_all()
 except:
 #an exception during the _action handler. Break and reraise
 self._break()
 raise

 # Wait in the barrier until we are released. Raise an exception
 # if the barrier is reset or broken.
 def _wait(self, timeout):
 if not self._cond.wait_for(lambda : self._state != 0, timeout):
 #timed out. Break the barrier
 self._break()
 raise BrokenBarrierError
 if self._state < 0:
 raise BrokenBarrierError
 assert self._state == 1

 # If we are the last thread to exit the barrier, signal any threads
 # waiting for the barrier to drain.
 def _exit(self):
 if self._count == 0:
 if self._state in (-1, 1):
 #resetting or draining
 self._state = 0
 self._cond.notify_all()

 def reset(self):
 """Reset the barrier to the initial state.

 Any threads currently waiting will get the BrokenBarrier exception
 raised.

 """
 with self._cond:
 if self._count > 0:
 if self._state == 0:
 #reset the barrier, waking up threads
 self._state = -1
 elif self._state == -2:
 #was broken, set it to reset state
 #which clears when the last thread exits
 self._state = -1
 else:
 self._state = 0
 self._cond.notify_all()

 def abort(self):
 """Place the barrier into a 'broken' state.

 Useful in case of error. Any currently waiting threads and threads
 attempting to 'wait()' will have BrokenBarrierError raised.

 """
 with self._cond:
 self._break()

 def _break(self):
 # An internal error was detected. The barrier is set to
 # a broken state all parties awakened.
 self._state = -2
 self._cond.notify_all()

 @property
 def parties(self):
 """Return the number of threads required to trip the barrier."""
 return self._parties

 @property
 def n_waiting(self):
 """Return the number of threads currently waiting at the barrier."""
 # We don't need synchronization here since this is an ephemeral result
 # anyway. It returns the correct value in the steady state.
 if self._state == 0:
 return self._count
 return 0

 @property
 def broken(self):
 """Return True if the barrier is in a broken state."""
 return self._state == -2

exception raised by the Barrier class
class BrokenBarrierError(RuntimeError):
 pass

Helper to generate new thread names
_counter = _count().__next__
_counter() # Consume 0 so first non-main thread has id 1.
def _newname(template="Thread-%d"):
 return template % _counter()

Active thread administration
_active_limbo_lock = _allocate_lock()
_active = {} # maps thread id to Thread object
_limbo = {}
_dangling = WeakSet()
Set of Thread._tstate_lock locks of non-daemon threads used by _shutdown()
to wait until all Python thread states get deleted:
see Thread._set_tstate_lock().
_shutdown_locks_lock = _allocate_lock()
_shutdown_locks = set()

Main class for threads

class Thread:
 """A class that represents a thread of control.

 This class can be safely subclassed in a limited fashion. There are two ways
 to specify the activity: by passing a callable object to the constructor, or
 by overriding the run() method in a subclass.

 """

 _initialized = False
 # Need to store a reference to sys.exc_info for printing
 # out exceptions when a thread tries to use a global var. during interp.
 # shutdown and thus raises an exception about trying to perform some
 # operation on/with a NoneType
 _exc_info = _sys.exc_info
 # Keep sys.exc_clear too to clear the exception just before
 # allowing .join() to return.
 #XXX __exc_clear = _sys.exc_clear

 def __init__(self, group=None, target=None, name=None,
 args=(), kwargs=None, *, daemon=None):
 """This constructor should always be called with keyword arguments. Arguments are:

 group should be None; reserved for future extension when a ThreadGroup
 class is implemented.

 target is the callable object to be invoked by the run()
 method. Defaults to None, meaning nothing is called.

 name is the thread name. By default, a unique name is constructed of
 the form "Thread-N" where N is a small decimal number.

 args is the argument tuple for the target invocation. Defaults to ().

 kwargs is a dictionary of keyword arguments for the target
 invocation. Defaults to {}.

 If a subclass overrides the constructor, it must make sure to invoke
 the base class constructor (Thread.__init__()) before doing anything
 else to the thread.

 """
 assert group is None, "group argument must be None for now"
 if kwargs is None:
 kwargs = {}
 self._target = target
 self._name = str(name or _newname())
 self._args = args
 self._kwargs = kwargs
 if daemon is not None:
 self._daemonic = daemon
 else:
 self._daemonic = current_thread().daemon
 self._ident = None
 self._tstate_lock = None
 self._started = Event()
 self._is_stopped = False
 self._initialized = True
 # sys.stderr is not stored in the class like
 # sys.exc_info since it can be changed between instances
 self._stderr = _sys.stderr
 # For debugging and _after_fork()
 _dangling.add(self)

 def _reset_internal_locks(self, is_alive):
 # private! Called by _after_fork() to reset our internal locks as
 # they may be in an invalid state leading to a deadlock or crash.
 self._started._reset_internal_locks()
 if is_alive:
 self._set_tstate_lock()
 else:
 # The thread isn't alive after fork: it doesn't have a tstate
 # anymore.
 self._is_stopped = True
 self._tstate_lock = None

 def __repr__(self):
 assert self._initialized, "Thread.__init__() was not called"
 status = "initial"
 if self._started.is_set():
 status = "started"
 self.is_alive() # easy way to get ._is_stopped set when appropriate
 if self._is_stopped:
 status = "stopped"
 if self._daemonic:
 status += " daemon"
 if self._ident is not None:
 status += " %s" % self._ident
 return "<%s(%s, %s)>" % (self.__class__.__name__, self._name, status)

 def start(self):
 """Start the thread's activity.

 It must be called at most once per thread object. It arranges for the
 object's run() method to be invoked in a separate thread of control.

 This method will raise a RuntimeError if called more than once on the
 same thread object.

 """
 if not self._initialized:
 raise RuntimeError("thread.__init__() not called")

 if self._started.is_set():
 raise RuntimeError("threads can only be started once")
 with _active_limbo_lock:
 _limbo[self] = self
 try:
 _start_new_thread(self._bootstrap, ())
 except Exception:
 with _active_limbo_lock:
 del _limbo[self]
 raise
 self._started.wait()

 def run(self):
 """Method representing the thread's activity.

 You may override this method in a subclass. The standard run() method
 invokes the callable object passed to the object's constructor as the
 target argument, if any, with sequential and keyword arguments taken
 from the args and kwargs arguments, respectively.

 """
 try:
 if self._target:
 self._target(*self._args, **self._kwargs)
 finally:
 # Avoid a refcycle if the thread is running a function with
 # an argument that has a member that points to the thread.
 del self._target, self._args, self._kwargs

 def _bootstrap(self):
 # Wrapper around the real bootstrap code that ignores
 # exceptions during interpreter cleanup. Those typically
 # happen when a daemon thread wakes up at an unfortunate
 # moment, finds the world around it destroyed, and raises some
 # random exception *** while trying to report the exception in
 # _bootstrap_inner() below ***. Those random exceptions
 # don't help anybody, and they confuse users, so we suppress
 # them. We suppress them only when it appears that the world
 # indeed has already been destroyed, so that exceptions in
 # _bootstrap_inner() during normal business hours are properly
 # reported. Also, we only suppress them for daemonic threads;
 # if a non-daemonic encounters this, something else is wrong.
 try:
 self._bootstrap_inner()
 except:
 if self._daemonic and _sys is None:
 return
 raise

 def _set_ident(self):
 self._ident = get_ident()

 def _set_tstate_lock(self):
 """
 Set a lock object which will be released by the interpreter when
 the underlying thread state (see pystate.h) gets deleted.
 """
 self._tstate_lock = _set_sentinel()
 self._tstate_lock.acquire()

 if not self.daemon:
 with _shutdown_locks_lock:
 _shutdown_locks.add(self._tstate_lock)

 def _bootstrap_inner(self):
 try:
 self._set_ident()
 self._set_tstate_lock()
 self._started.set()
 with _active_limbo_lock:
 _active[self._ident] = self
 del _limbo[self]

 if _trace_hook:
 _sys.settrace(_trace_hook)
 if _profile_hook:
 _sys.setprofile(_profile_hook)

 try:
 self.run()
 except SystemExit:
 pass
 except:
 # If sys.stderr is no more (most likely from interpreter
 # shutdown) use self._stderr. Otherwise still use sys (as in
 # _sys) in case sys.stderr was redefined since the creation of
 # self.
 if _sys and _sys.stderr is not None:
 print("Exception in thread %s:\n%s" %
 (self.name, _format_exc()), file=_sys.stderr)
 elif self._stderr is not None:
 # Do the best job possible w/o a huge amt. of code to
 # approximate a traceback (code ideas from
 # Lib/traceback.py)
 exc_type, exc_value, exc_tb = self._exc_info()
 try:
 print((
 "Exception in thread " + self.name +
 " (most likely raised during interpreter shutdown):"), file=self._stderr)
 print((
 "Traceback (most recent call last):"), file=self._stderr)
 while exc_tb:
 print((
 ' File "%s", line %s, in %s' %
 (exc_tb.tb_frame.f_code.co_filename,
 exc_tb.tb_lineno,
 exc_tb.tb_frame.f_code.co_name)), file=self._stderr)
 exc_tb = exc_tb.tb_next
 print(("%s: %s" % (exc_type, exc_value)), file=self._stderr)
 self._stderr.flush()
 # Make sure that exc_tb gets deleted since it is a memory
 # hog; deleting everything else is just for thoroughness
 finally:
 del exc_type, exc_value, exc_tb
 finally:
 # Prevent a race in
 # test_threading.test_no_refcycle_through_target when
 # the exception keeps the target alive past when we
 # assert that it's dead.
 #XXX self._exc_clear()
 pass
 finally:
 with _active_limbo_lock:
 try:
 # We don't call self._delete() because it also
 # grabs _active_limbo_lock.
 del _active[get_ident()]
 except:
 pass

 def _stop(self):
 # After calling ._stop(), .is_alive() returns False and .join() returns
 # immediately. ._tstate_lock must be released before calling ._stop().
 #
 # Normal case: C code at the end of the thread's life
 # (release_sentinel in _threadmodule.c) releases ._tstate_lock, and
 # that's detected by our ._wait_for_tstate_lock(), called by .join()
 # and .is_alive(). Any number of threads _may_ call ._stop()
 # simultaneously (for example, if multiple threads are blocked in
 # .join() calls), and they're not serialized. That's harmless -
 # they'll just make redundant rebindings of ._is_stopped and
 # ._tstate_lock. Obscure: we rebind ._tstate_lock last so that the
 # "assert self._is_stopped" in ._wait_for_tstate_lock() always works
 # (the assert is executed only if ._tstate_lock is None).
 #
 # Special case: _main_thread releases ._tstate_lock via this
 # module's _shutdown() function.
 lock = self._tstate_lock
 if lock is not None:
 assert not lock.locked()
 self._is_stopped = True
 self._tstate_lock = None
 if not self.daemon:
 with _shutdown_locks_lock:
 _shutdown_locks.discard(lock)

 def _delete(self):
 "Remove current thread from the dict of currently running threads."
 with _active_limbo_lock:
 del _active[get_ident()]
 # There must not be any python code between the previous line
 # and after the lock is released. Otherwise a tracing function
 # could try to acquire the lock again in the same thread, (in
 # current_thread()), and would block.

 def join(self, timeout=None):
 """Wait until the thread terminates.

 This blocks the calling thread until the thread whose join() method is
 called terminates -- either normally or through an unhandled exception
 or until the optional timeout occurs.

 When the timeout argument is present and not None, it should be a
 floating point number specifying a timeout for the operation in seconds
 (or fractions thereof). As join() always returns None, you must call
 is_alive() after join() to decide whether a timeout happened -- if the
 thread is still alive, the join() call timed out.

 When the timeout argument is not present or None, the operation will
 block until the thread terminates.

 A thread can be join()ed many times.

 join() raises a RuntimeError if an attempt is made to join the current
 thread as that would cause a deadlock. It is also an error to join() a
 thread before it has been started and attempts to do so raises the same
 exception.

 """
 if not self._initialized:
 raise RuntimeError("Thread.__init__() not called")
 if not self._started.is_set():
 raise RuntimeError("cannot join thread before it is started")
 if self is current_thread():
 raise RuntimeError("cannot join current thread")

 if timeout is None:
 self._wait_for_tstate_lock()
 else:
 # the behavior of a negative timeout isn't documented, but
 # historically .join(timeout=x) for x<0 has acted as if timeout=0
 self._wait_for_tstate_lock(timeout=max(timeout, 0))

 def _wait_for_tstate_lock(self, block=True, timeout=-1):
 # Issue #18808: wait for the thread state to be gone.
 # At the end of the thread's life, after all knowledge of the thread
 # is removed from C data structures, C code releases our _tstate_lock.
 # This method passes its arguments to _tstate_lock.acquire().
 # If the lock is acquired, the C code is done, and self._stop() is
 # called. That sets ._is_stopped to True, and ._tstate_lock to None.
 lock = self._tstate_lock
 if lock is None: # already determined that the C code is done
 assert self._is_stopped
 elif lock.acquire(block, timeout):
 lock.release()
 self._stop()

 @property
 def name(self):
 """A string used for identification purposes only.

 It has no semantics. Multiple threads may be given the same name. The
 initial name is set by the constructor.

 """
 assert self._initialized, "Thread.__init__() not called"
 return self._name

 @name.setter
 def name(self, name):
 assert self._initialized, "Thread.__init__() not called"
 self._name = str(name)

 @property
 def ident(self):
 """Thread identifier of this thread or None if it has not been started.

 This is a nonzero integer. See the get_ident() function. Thread
 identifiers may be recycled when a thread exits and another thread is
 created. The identifier is available even after the thread has exited.

 """
 assert self._initialized, "Thread.__init__() not called"
 return self._ident

 def is_alive(self):
 """Return whether the thread is alive.

 This method returns True just before the run() method starts until just
 after the run() method terminates. The module function enumerate()
 returns a list of all alive threads.

 """
 assert self._initialized, "Thread.__init__() not called"
 if self._is_stopped or not self._started.is_set():
 return False
 self._wait_for_tstate_lock(False)
 return not self._is_stopped

 def isAlive(self):
 """Return whether the thread is alive.

 This method is deprecated, use is_alive() instead.
 """
 import warnings
 warnings.warn('isAlive() is deprecated, use is_alive() instead',
 PendingDeprecationWarning, stacklevel=2)
 return self.is_alive()

 @property
 def daemon(self):
 """A boolean value indicating whether this thread is a daemon thread.

 This must be set before start() is called, otherwise RuntimeError is
 raised. Its initial value is inherited from the creating thread; the
 main thread is not a daemon thread and therefore all threads created in
 the main thread default to daemon = False.

 The entire Python program exits when only daemon threads are left.

 """
 assert self._initialized, "Thread.__init__() not called"
 return self._daemonic

 @daemon.setter
 def daemon(self, daemonic):
 if not self._initialized:
 raise RuntimeError("Thread.__init__() not called")
 if self._started.is_set():
 raise RuntimeError("cannot set daemon status of active thread")
 self._daemonic = daemonic

 def isDaemon(self):
 return self.daemon

 def setDaemon(self, daemonic):
 self.daemon = daemonic

 def getName(self):
 return self.name

 def setName(self, name):
 self.name = name

The timer class was contributed by Itamar Shtull-Trauring

class Timer(Thread):
 """Call a function after a specified number of seconds:

 t = Timer(30.0, f, args=None, kwargs=None)
 t.start()
 t.cancel() # stop the timer's action if it's still waiting

 """

 def __init__(self, interval, function, args=None, kwargs=None):
 Thread.__init__(self)
 self.interval = interval
 self.function = function
 self.args = args if args is not None else []
 self.kwargs = kwargs if kwargs is not None else {}
 self.finished = Event()

 def cancel(self):
 """Stop the timer if it hasn't finished yet."""
 self.finished.set()

 def run(self):
 self.finished.wait(self.interval)
 if not self.finished.is_set():
 self.function(*self.args, **self.kwargs)
 self.finished.set()

Special thread class to represent the main thread

class _MainThread(Thread):

 def __init__(self):
 Thread.__init__(self, name="MainThread", daemon=False)
 self._set_tstate_lock()
 self._started.set()
 self._set_ident()
 with _active_limbo_lock:
 _active[self._ident] = self

Dummy thread class to represent threads not started here.
These aren't garbage collected when they die, nor can they be waited for.
If they invoke anything in threading.py that calls current_thread(), they
leave an entry in the _active dict forever after.
Their purpose is to return *something* from current_thread().
They are marked as daemon threads so we won't wait for them
when we exit (conform previous semantics).

class _DummyThread(Thread):

 def __init__(self):
 Thread.__init__(self, name=_newname("Dummy-%d"), daemon=True)

 self._started.set()
 self._set_ident()
 with _active_limbo_lock:
 _active[self._ident] = self

 def _stop(self):
 pass

 def is_alive(self):
 assert not self._is_stopped and self._started.is_set()
 return True

 def join(self, timeout=None):
 assert False, "cannot join a dummy thread"

Global API functions

def current_thread():
 """Return the current Thread object, corresponding to the caller's thread of control.

 If the caller's thread of control was not created through the threading
 module, a dummy thread object with limited functionality is returned.

 """
 try:
 return _active[get_ident()]
 except KeyError:
 return _DummyThread()

currentThread = current_thread

def active_count():
 """Return the number of Thread objects currently alive.

 The returned count is equal to the length of the list returned by
 enumerate().

 """
 with _active_limbo_lock:
 return len(_active) + len(_limbo)

activeCount = active_count

def _enumerate():
 # Same as enumerate(), but without the lock. Internal use only.
 return list(_active.values()) + list(_limbo.values())

def enumerate():
 """Return a list of all Thread objects currently alive.

 The list includes daemonic threads, dummy thread objects created by
 current_thread(), and the main thread. It excludes terminated threads and
 threads that have not yet been started.

 """
 with _active_limbo_lock:
 return list(_active.values()) + list(_limbo.values())

from _thread import stack_size

Create the main thread object,
and make it available for the interpreter
(Py_Main) as threading._shutdown.

_main_thread = _MainThread()

def _shutdown():
 """
 Wait until the Python thread state of all non-daemon threads get deleted.
 """
 # Obscure: other threads may be waiting to join _main_thread. That's
 # dubious, but some code does it. We can't wait for C code to release
 # the main thread's tstate_lock - that won't happen until the interpreter
 # is nearly dead. So we release it here. Note that just calling _stop()
 # isn't enough: other threads may already be waiting on _tstate_lock.
 if _main_thread._is_stopped:
 # _shutdown() was already called
 return

 # Main thread
 tlock = _main_thread._tstate_lock
 # The main thread isn't finished yet, so its thread state lock can't have
 # been released.
 assert tlock is not None
 assert tlock.locked()
 tlock.release()
 _main_thread._stop()

 # Join all non-deamon threads
 while True:
 with _shutdown_locks_lock:
 locks = list(_shutdown_locks)
 _shutdown_locks.clear()

 if not locks:
 break

 for lock in locks:
 # mimick Thread.join()
 lock.acquire()
 lock.release()

 # new threads can be spawned while we were waiting for the other
 # threads to complete

def main_thread():
 """Return the main thread object.

 In normal conditions, the main thread is the thread from which the
 Python interpreter was started.
 """
 return _main_thread

get thread-local implementation, either from the thread
module, or from the python fallback

try:
 from _thread import _local as local
except ImportError:
 from _threading_local import local

def _after_fork():
 """
 Cleanup threading module state that should not exist after a fork.
 """
 # Reset _active_limbo_lock, in case we forked while the lock was held
 # by another (non-forked) thread. http://bugs.python.org/issue874900
 global _active_limbo_lock, _main_thread
 global _shutdown_locks_lock, _shutdown_locks
 _active_limbo_lock = _allocate_lock()

 # fork() only copied the current thread; clear references to others.
 new_active = {}

 try:
 current = _active[get_ident()]
 except KeyError:
 # fork() was called in a thread which was not spawned
 # by threading.Thread. For example, a thread spawned
 # by thread.start_new_thread().
 current = _MainThread()

 _main_thread = current

 # reset _shutdown() locks: threads re-register their _tstate_lock below
 _shutdown_locks_lock = _allocate_lock()
 _shutdown_locks = set()

 with _active_limbo_lock:
 # Dangling thread instances must still have their locks reset,
 # because someone may join() them.
 threads = set(_enumerate())
 threads.update(_dangling)
 for thread in threads:
 # Any lock/condition variable may be currently locked or in an
 # invalid state, so we reinitialize them.
 if thread is current:
 # There is only one active thread. We reset the ident to
 # its new value since it can have changed.
 thread._reset_internal_locks(True)
 ident = get_ident()
 thread._ident = ident
 new_active[ident] = thread
 else:
 # All the others are already stopped.
 thread._reset_internal_locks(False)
 thread._stop()

 _limbo.clear()
 _active.clear()
 _active.update(new_active)
 assert len(_active) == 1

if hasattr(_os, "register_at_fork"):
 _os.register_at_fork(after_in_child=_after_fork)

 Source code for watchdog.events

coding: utf-8
#
Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com>
Copyright 2012 Google, Inc & contributors.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
:module: watchdog.events
:synopsis: File system events and event handlers.
:author: yesudeep@google.com (Yesudeep Mangalapilly)
:author: contact@tiger-222.fr (Mickaël Schoentgen)

Event Classes

.. autoclass:: FileSystemEvent
 :members:
 :show-inheritance:
 :inherited-members:

.. autoclass:: FileSystemMovedEvent
 :members:
 :show-inheritance:

.. autoclass:: FileMovedEvent
 :members:
 :show-inheritance:

.. autoclass:: DirMovedEvent
 :members:
 :show-inheritance:

.. autoclass:: FileModifiedEvent
 :members:
 :show-inheritance:

.. autoclass:: DirModifiedEvent
 :members:
 :show-inheritance:

.. autoclass:: FileCreatedEvent
 :members:
 :show-inheritance:

.. autoclass:: FileClosedEvent
 :members:
 :show-inheritance:

.. autoclass:: DirCreatedEvent
 :members:
 :show-inheritance:

.. autoclass:: FileDeletedEvent
 :members:
 :show-inheritance:

.. autoclass:: DirDeletedEvent
 :members:
 :show-inheritance:

Event Handler Classes

.. autoclass:: FileSystemEventHandler
 :members:
 :show-inheritance:

.. autoclass:: PatternMatchingEventHandler
 :members:
 :show-inheritance:

.. autoclass:: RegexMatchingEventHandler
 :members:
 :show-inheritance:

.. autoclass:: LoggingEventHandler
 :members:
 :show-inheritance:

"""

import os.path
import logging
import re
from watchdog.utils.patterns import match_any_paths

EVENT_TYPE_MOVED = 'moved'
EVENT_TYPE_DELETED = 'deleted'
EVENT_TYPE_CREATED = 'created'
EVENT_TYPE_MODIFIED = 'modified'
EVENT_TYPE_CLOSED = 'closed'

[docs]class FileSystemEvent:
 """
 Immutable type that represents a file system event that is triggered
 when a change occurs on the monitored file system.

 All FileSystemEvent objects are required to be immutable and hence
 can be used as keys in dictionaries or be added to sets.
 """

 event_type = None
 """The type of the event as a string."""

 is_directory = False
 """True if event was emitted for a directory; False otherwise."""

 is_synthetic = False
 """
 True if event was synthesized; False otherwise.

 These are events that weren't actually broadcast by the OS, but
 are presumed to have happened based on other, actual events.
 """

 def __init__(self, src_path):
 self._src_path = src_path

 @property
 def src_path(self):
 """Source path of the file system object that triggered this event."""
 return self._src_path

 def __str__(self):
 return self.__repr__()

 def __repr__(self):
 return ("<%(class_name)s: event_type=%(event_type)s, "
 "src_path=%(src_path)r, "
 "is_directory=%(is_directory)s>"
) % (dict(
 class_name=self.__class__.__name__,
 event_type=self.event_type,
 src_path=self.src_path,
 is_directory=self.is_directory))

 # Used for comparison of events.
 @property
 def key(self):
 return (self.event_type, self.src_path, self.is_directory)

 def __eq__(self, event):
 return self.key == event.key

 def __ne__(self, event):
 return self.key != event.key

 def __hash__(self):
 return hash(self.key)

[docs]class FileSystemMovedEvent(FileSystemEvent):
 """
 File system event representing any kind of file system movement.
 """

 event_type = EVENT_TYPE_MOVED

 def __init__(self, src_path, dest_path):
 super().__init__(src_path)
 self._dest_path = dest_path

 @property
 def dest_path(self):
 """The destination path of the move event."""
 return self._dest_path

 # Used for hashing this as an immutable object.
 @property
 def key(self):
 return (self.event_type, self.src_path, self.dest_path, self.is_directory)

 def __repr__(self):
 return ("<%(class_name)s: src_path=%(src_path)r, "
 "dest_path=%(dest_path)r, "
 "is_directory=%(is_directory)s>"
) % (dict(class_name=self.__class__.__name__,
 src_path=self.src_path,
 dest_path=self.dest_path,
 is_directory=self.is_directory))

File events.

[docs]class FileDeletedEvent(FileSystemEvent):
 """File system event representing file deletion on the file system."""

 event_type = EVENT_TYPE_DELETED

[docs]class FileModifiedEvent(FileSystemEvent):
 """File system event representing file modification on the file system."""

 event_type = EVENT_TYPE_MODIFIED

[docs]class FileCreatedEvent(FileSystemEvent):
 """File system event representing file creation on the file system."""

 event_type = EVENT_TYPE_CREATED

[docs]class FileMovedEvent(FileSystemMovedEvent):
 """File system event representing file movement on the file system."""

[docs]class FileClosedEvent(FileSystemEvent):
 """File system event representing file close on the file system."""

 event_type = EVENT_TYPE_CLOSED

Directory events.

[docs]class DirDeletedEvent(FileSystemEvent):
 """File system event representing directory deletion on the file system."""

 event_type = EVENT_TYPE_DELETED
 is_directory = True

[docs]class DirModifiedEvent(FileSystemEvent):
 """
 File system event representing directory modification on the file system.
 """

 event_type = EVENT_TYPE_MODIFIED
 is_directory = True

[docs]class DirCreatedEvent(FileSystemEvent):
 """File system event representing directory creation on the file system."""

 event_type = EVENT_TYPE_CREATED
 is_directory = True

[docs]class DirMovedEvent(FileSystemMovedEvent):
 """File system event representing directory movement on the file system."""

 is_directory = True

[docs]class FileSystemEventHandler:
 """
 Base file system event handler that you can override methods from.
 """

[docs] def dispatch(self, event):
 """Dispatches events to the appropriate methods.

 :param event:
 The event object representing the file system event.
 :type event:
 :class:`FileSystemEvent`
 """
 self.on_any_event(event)
 {
 EVENT_TYPE_CREATED: self.on_created,
 EVENT_TYPE_DELETED: self.on_deleted,
 EVENT_TYPE_MODIFIED: self.on_modified,
 EVENT_TYPE_MOVED: self.on_moved,
 EVENT_TYPE_CLOSED: self.on_closed,
 }[event.event_type](event)

[docs] def on_any_event(self, event):
 """Catch-all event handler.

 :param event:
 The event object representing the file system event.
 :type event:
 :class:`FileSystemEvent`
 """

[docs] def on_moved(self, event):
 """Called when a file or a directory is moved or renamed.

 :param event:
 Event representing file/directory movement.
 :type event:
 :class:`DirMovedEvent` or :class:`FileMovedEvent`
 """

[docs] def on_created(self, event):
 """Called when a file or directory is created.

 :param event:
 Event representing file/directory creation.
 :type event:
 :class:`DirCreatedEvent` or :class:`FileCreatedEvent`
 """

[docs] def on_deleted(self, event):
 """Called when a file or directory is deleted.

 :param event:
 Event representing file/directory deletion.
 :type event:
 :class:`DirDeletedEvent` or :class:`FileDeletedEvent`
 """

[docs] def on_modified(self, event):
 """Called when a file or directory is modified.

 :param event:
 Event representing file/directory modification.
 :type event:
 :class:`DirModifiedEvent` or :class:`FileModifiedEvent`
 """

[docs] def on_closed(self, event):
 """Called when a file opened for writing is closed.

 :param event:
 Event representing file closing.
 :type event:
 :class:`FileClosedEvent`
 """

[docs]class PatternMatchingEventHandler(FileSystemEventHandler):
 """
 Matches given patterns with file paths associated with occurring events.
 """

 def __init__(self, patterns=None, ignore_patterns=None,
 ignore_directories=False, case_sensitive=False):
 super().__init__()

 self._patterns = patterns
 self._ignore_patterns = ignore_patterns
 self._ignore_directories = ignore_directories
 self._case_sensitive = case_sensitive

 @property
 def patterns(self):
 """
 (Read-only)
 Patterns to allow matching event paths.
 """
 return self._patterns

 @property
 def ignore_patterns(self):
 """
 (Read-only)
 Patterns to ignore matching event paths.
 """
 return self._ignore_patterns

 @property
 def ignore_directories(self):
 """
 (Read-only)
 ``True`` if directories should be ignored; ``False`` otherwise.
 """
 return self._ignore_directories

 @property
 def case_sensitive(self):
 """
 (Read-only)
 ``True`` if path names should be matched sensitive to case; ``False``
 otherwise.
 """
 return self._case_sensitive

[docs] def dispatch(self, event):
 """Dispatches events to the appropriate methods.

 :param event:
 The event object representing the file system event.
 :type event:
 :class:`FileSystemEvent`
 """
 if self.ignore_directories and event.is_directory:
 return

 paths = []
 if hasattr(event, 'dest_path'):
 paths.append(os.fsdecode(event.dest_path))
 if event.src_path:
 paths.append(os.fsdecode(event.src_path))

 if match_any_paths(paths,
 included_patterns=self.patterns,
 excluded_patterns=self.ignore_patterns,
 case_sensitive=self.case_sensitive):
 super().dispatch(event)

[docs]class RegexMatchingEventHandler(FileSystemEventHandler):
 """
 Matches given regexes with file paths associated with occurring events.
 """

 def __init__(self, regexes=None, ignore_regexes=None,
 ignore_directories=False, case_sensitive=False):
 super().__init__()

 if regexes is None:
 regexes = [r".*"]
 if ignore_regexes is None:
 ignore_regexes = []
 if case_sensitive:
 self._regexes = [re.compile(r) for r in regexes]
 self._ignore_regexes = [re.compile(r) for r in ignore_regexes]
 else:
 self._regexes = [re.compile(r, re.I) for r in regexes]
 self._ignore_regexes = [re.compile(r, re.I) for r in ignore_regexes]
 self._ignore_directories = ignore_directories
 self._case_sensitive = case_sensitive

 @property
 def regexes(self):
 """
 (Read-only)
 Regexes to allow matching event paths.
 """
 return self._regexes

 @property
 def ignore_regexes(self):
 """
 (Read-only)
 Regexes to ignore matching event paths.
 """
 return self._ignore_regexes

 @property
 def ignore_directories(self):
 """
 (Read-only)
 ``True`` if directories should be ignored; ``False`` otherwise.
 """
 return self._ignore_directories

 @property
 def case_sensitive(self):
 """
 (Read-only)
 ``True`` if path names should be matched sensitive to case; ``False``
 otherwise.
 """
 return self._case_sensitive

[docs] def dispatch(self, event):
 """Dispatches events to the appropriate methods.

 :param event:
 The event object representing the file system event.
 :type event:
 :class:`FileSystemEvent`
 """
 if self.ignore_directories and event.is_directory:
 return

 paths = []
 if hasattr(event, 'dest_path'):
 paths.append(os.fsdecode(event.dest_path))
 if event.src_path:
 paths.append(os.fsdecode(event.src_path))

 if any(r.match(p) for r in self.ignore_regexes for p in paths):
 return

 if any(r.match(p) for r in self.regexes for p in paths):
 super().dispatch(event)

[docs]class LoggingEventHandler(FileSystemEventHandler):
 """Logs all the events captured."""

 def __init__(self, logger=None):
 super().__init__()

 self.logger = logger or logging.root

[docs] def on_moved(self, event):
 super().on_moved(event)

 what = 'directory' if event.is_directory else 'file'
 self.logger.info("Moved %s: from %s to %s", what, event.src_path,
 event.dest_path)

[docs] def on_created(self, event):
 super().on_created(event)

 what = 'directory' if event.is_directory else 'file'
 self.logger.info("Created %s: %s", what, event.src_path)

[docs] def on_deleted(self, event):
 super().on_deleted(event)

 what = 'directory' if event.is_directory else 'file'
 self.logger.info("Deleted %s: %s", what, event.src_path)

[docs] def on_modified(self, event):
 super().on_modified(event)

 what = 'directory' if event.is_directory else 'file'
 self.logger.info("Modified %s: %s", what, event.src_path)

def generate_sub_moved_events(src_dir_path, dest_dir_path):
 """Generates an event list of :class:`DirMovedEvent` and
 :class:`FileMovedEvent` objects for all the files and directories within
 the given moved directory that were moved along with the directory.

 :param src_dir_path:
 The source path of the moved directory.
 :param dest_dir_path:
 The destination path of the moved directory.
 :returns:
 An iterable of file system events of type :class:`DirMovedEvent` and
 :class:`FileMovedEvent`.
 """
 for root, directories, filenames in os.walk(dest_dir_path):
 for directory in directories:
 full_path = os.path.join(root, directory)
 renamed_path = full_path.replace(dest_dir_path, src_dir_path) if src_dir_path else None
 event = DirMovedEvent(renamed_path, full_path)
 event.is_synthetic = True
 yield event
 for filename in filenames:
 full_path = os.path.join(root, filename)
 renamed_path = full_path.replace(dest_dir_path, src_dir_path) if src_dir_path else None
 event = FileMovedEvent(renamed_path, full_path)
 event.is_synthetic = True
 yield event

def generate_sub_created_events(src_dir_path):
 """Generates an event list of :class:`DirCreatedEvent` and
 :class:`FileCreatedEvent` objects for all the files and directories within
 the given moved directory that were moved along with the directory.

 :param src_dir_path:
 The source path of the created directory.
 :returns:
 An iterable of file system events of type :class:`DirCreatedEvent` and
 :class:`FileCreatedEvent`.
 """
 for root, directories, filenames in os.walk(src_dir_path):
 for directory in directories:
 event = DirCreatedEvent(os.path.join(root, directory))
 event.is_synthetic = True
 yield event
 for filename in filenames:
 event = FileCreatedEvent(os.path.join(root, filename))
 event.is_synthetic = True
 yield event

 Source code for watchdog.tricks

coding: utf-8
#
Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com>
Copyright 2012 Google, Inc & contributors.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
:module: watchdog.tricks
:synopsis: Utility event handlers.
:author: yesudeep@google.com (Yesudeep Mangalapilly)
:author: contact@tiger-222.fr (Mickaël Schoentgen)

Classes

.. autoclass:: Trick
 :members:
 :show-inheritance:

.. autoclass:: LoggerTrick
 :members:
 :show-inheritance:

.. autoclass:: ShellCommandTrick
 :members:
 :show-inheritance:

.. autoclass:: AutoRestartTrick
 :members:
 :show-inheritance:

"""

import os
import signal
import subprocess
import time

from watchdog.utils import echo
from watchdog.events import PatternMatchingEventHandler

[docs]class Trick(PatternMatchingEventHandler):

 """Your tricks should subclass this class."""

 @classmethod
 def generate_yaml(cls):
 context = dict(module_name=cls.__module__,
 klass_name=cls.__name__)
 template_yaml = """- %(module_name)s.%(klass_name)s:
 args:
 - argument1
 - argument2
 kwargs:
 patterns:
 - "*.py"
 - "*.js"
 ignore_patterns:
 - "version.py"
 ignore_directories: false
"""
 return template_yaml % context

[docs]class LoggerTrick(Trick):

 """A simple trick that does only logs events."""

[docs] def on_any_event(self, event):
 pass

[docs] @echo.echo
 def on_modified(self, event):
 pass

[docs] @echo.echo
 def on_deleted(self, event):
 pass

[docs] @echo.echo
 def on_created(self, event):
 pass

[docs] @echo.echo
 def on_moved(self, event):
 pass

[docs]class ShellCommandTrick(Trick):

 """Executes shell commands in response to matched events."""

 def __init__(self, shell_command=None, patterns=None, ignore_patterns=None,
 ignore_directories=False, wait_for_process=False,
 drop_during_process=False):
 super().__init__(
 patterns=patterns, ignore_patterns=ignore_patterns,
 ignore_directories=ignore_directories)
 self.shell_command = shell_command
 self.wait_for_process = wait_for_process
 self.drop_during_process = drop_during_process
 self.process = None

[docs] def on_any_event(self, event):
 from string import Template

 if self.drop_during_process and self.process and self.process.poll() is None:
 return

 if event.is_directory:
 object_type = 'directory'
 else:
 object_type = 'file'

 context = {
 'watch_src_path': event.src_path,
 'watch_dest_path': '',
 'watch_event_type': event.event_type,
 'watch_object': object_type,
 }

 if self.shell_command is None:
 if hasattr(event, 'dest_path'):
 context.update({'dest_path': event.dest_path})
 command = 'echo "${watch_event_type} ${watch_object} from ${watch_src_path} to ${watch_dest_path}"'
 else:
 command = 'echo "${watch_event_type} ${watch_object} ${watch_src_path}"'
 else:
 if hasattr(event, 'dest_path'):
 context.update({'watch_dest_path': event.dest_path})
 command = self.shell_command

 command = Template(command).safe_substitute(**context)
 self.process = subprocess.Popen(command, shell=True)
 if self.wait_for_process:
 self.process.wait()

[docs]class AutoRestartTrick(Trick):

 """Starts a long-running subprocess and restarts it on matched events.

 The command parameter is a list of command arguments, such as
 `['bin/myserver', '-c', 'etc/myconfig.ini']`.

 Call `start()` after creating the Trick. Call `stop()` when stopping
 the process.
 """

 def __init__(self, command, patterns=None, ignore_patterns=None,
 ignore_directories=False, stop_signal=signal.SIGINT,
 kill_after=10):
 super().__init__(
 patterns=patterns, ignore_patterns=ignore_patterns,
 ignore_directories=ignore_directories)
 self.command = command
 self.stop_signal = stop_signal
 self.kill_after = kill_after
 self.process = None

 def start(self):
 self.process = subprocess.Popen(self.command, preexec_fn=os.setsid)

 def stop(self):
 if self.process is None:
 return
 try:
 os.killpg(os.getpgid(self.process.pid), self.stop_signal)
 except OSError:
 # Process is already gone
 pass
 else:
 kill_time = time.time() + self.kill_after
 while time.time() < kill_time:
 if self.process.poll() is not None:
 break
 time.sleep(0.25)
 else:
 try:
 os.killpg(os.getpgid(self.process.pid), 9)
 except OSError:
 # Process is already gone
 pass
 self.process = None

[docs] @echo.echo
 def on_any_event(self, event):
 self.stop()
 self.start()

 Source code for watchdog.utils

coding: utf-8
#
Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com>
Copyright 2012 Google, Inc & contributors.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
:module: watchdog.utils
:synopsis: Utility classes and functions.
:author: yesudeep@google.com (Yesudeep Mangalapilly)
:author: contact@tiger-222.fr (Mickaël Schoentgen)

Classes

.. autoclass:: BaseThread
 :members:
 :show-inheritance:
 :inherited-members:

"""
import sys
import threading

class UnsupportedLibc(Exception):
 pass

class WatchdogShutdown(Exception):
 """
 Semantic exception used to signal an external shutdown event.
 """
 pass

[docs]class BaseThread(threading.Thread):
 """ Convenience class for creating stoppable threads. """

 def __init__(self):
 threading.Thread.__init__(self)
 if hasattr(self, 'daemon'):
 self.daemon = True
 else:
 self.setDaemon(True)
 self._stopped_event = threading.Event()

 if not hasattr(self._stopped_event, 'is_set'):
 self._stopped_event.is_set = self._stopped_event.isSet

 @property
 def stopped_event(self):
 return self._stopped_event

[docs] def should_keep_running(self):
 """Determines whether the thread should continue running."""
 return not self._stopped_event.is_set()

[docs] def on_thread_stop(self):
 """Override this method instead of :meth:`stop()`.
 :meth:`stop()` calls this method.

 This method is called immediately after the thread is signaled to stop.
 """
 pass

[docs] def stop(self):
 """Signals the thread to stop."""
 self._stopped_event.set()
 self.on_thread_stop()

[docs] def on_thread_start(self):
 """Override this method instead of :meth:`start()`. :meth:`start()`
 calls this method.

 This method is called right before this thread is started and this
 object’s run() method is invoked.
 """
 pass

[docs] def start(self):
 self.on_thread_start()
 threading.Thread.start(self)

def load_module(module_name):
 """Imports a module given its name and returns a handle to it."""
 try:
 __import__(module_name)
 except ImportError:
 raise ImportError('No module named %s' % module_name)
 return sys.modules[module_name]

def load_class(dotted_path):
 """Loads and returns a class definition provided a dotted path
 specification the last part of the dotted path is the class name
 and there is at least one module name preceding the class name.

 Notes:
 You will need to ensure that the module you are trying to load
 exists in the Python path.

 Examples:
 - module.name.ClassName # Provided module.name is in the Python path.
 - module.ClassName # Provided module is in the Python path.

 What won't work:
 - ClassName
 - modle.name.ClassName # Typo in module name.
 - module.name.ClasNam # Typo in classname.
 """
 dotted_path_split = dotted_path.split('.')
 if len(dotted_path_split) > 1:
 klass_name = dotted_path_split[-1]
 module_name = '.'.join(dotted_path_split[:-1])

 module = load_module(module_name)
 if hasattr(module, klass_name):
 klass = getattr(module, klass_name)
 return klass
 # Finally create and return an instance of the class
 # return klass(*args, **kwargs)
 else:
 raise AttributeError('Module %s does not have class attribute %s' % (
 module_name, klass_name))
 else:
 raise ValueError(
 'Dotted module path %s must contain a module name and a classname' % dotted_path)

 Source code for watchdog.observers.api

coding: utf-8
#
Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com>
Copyright 2012 Google, Inc & contributors.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import queue
import threading
from pathlib import Path

from watchdog.utils import BaseThread
from watchdog.utils.bricks import SkipRepeatsQueue

DEFAULT_EMITTER_TIMEOUT = 1 # in seconds.
DEFAULT_OBSERVER_TIMEOUT = 1 # in seconds.

Collection classes
[docs]class EventQueue(SkipRepeatsQueue):
 """Thread-safe event queue based on a special queue that skips adding
 the same event (:class:`FileSystemEvent`) multiple times consecutively.
 Thus avoiding dispatching multiple event handling
 calls when multiple identical events are produced quicker than an observer
 can consume them.
 """

[docs]class ObservedWatch:
 """An scheduled watch.

 :param path:
 Path string.
 :param recursive:
 ``True`` if watch is recursive; ``False`` otherwise.
 """

 def __init__(self, path, recursive):
 if isinstance(path, Path):
 self._path = str(path)
 else:
 self._path = path
 self._is_recursive = recursive

 @property
 def path(self):
 """The path that this watch monitors."""
 return self._path

 @property
 def is_recursive(self):
 """Determines whether subdirectories are watched for the path."""
 return self._is_recursive

 @property
 def key(self):
 return self.path, self.is_recursive

 def __eq__(self, watch):
 return self.key == watch.key

 def __ne__(self, watch):
 return self.key != watch.key

 def __hash__(self):
 return hash(self.key)

 def __repr__(self):
 return "<%s: path=%s, is_recursive=%s>" % (
 type(self).__name__, self.path, self.is_recursive)

Observer classes
[docs]class EventEmitter(BaseThread):
 """
 Producer thread base class subclassed by event emitters
 that generate events and populate a queue with them.

 :param event_queue:
 The event queue to populate with generated events.
 :type event_queue:
 :class:`watchdog.events.EventQueue`
 :param watch:
 The watch to observe and produce events for.
 :type watch:
 :class:`ObservedWatch`
 :param timeout:
 Timeout (in seconds) between successive attempts at reading events.
 :type timeout:
 ``float``
 """

 def __init__(self, event_queue, watch, timeout=DEFAULT_EMITTER_TIMEOUT):
 BaseThread.__init__(self)
 self._event_queue = event_queue
 self._watch = watch
 self._timeout = timeout

 @property
 def timeout(self):
 """
 Blocking timeout for reading events.
 """
 return self._timeout

 @property
 def watch(self):
 """
 The watch associated with this emitter.
 """
 return self._watch

[docs] def queue_event(self, event):
 """
 Queues a single event.

 :param event:
 Event to be queued.
 :type event:
 An instance of :class:`watchdog.events.FileSystemEvent`
 or a subclass.
 """
 self._event_queue.put((event, self.watch))

[docs] def queue_events(self, timeout):
 """Override this method to populate the event queue with events
 per interval period.

 :param timeout:
 Timeout (in seconds) between successive attempts at
 reading events.
 :type timeout:
 ``float``
 """

[docs] def run(self):
 while self.should_keep_running():
 self.queue_events(self.timeout)

[docs]class EventDispatcher(BaseThread):
 """
 Consumer thread base class subclassed by event observer threads
 that dispatch events from an event queue to appropriate event handlers.

 :param timeout:
 Event queue blocking timeout (in seconds).
 :type timeout:
 ``float``
 """

 def __init__(self, timeout=DEFAULT_OBSERVER_TIMEOUT):
 BaseThread.__init__(self)
 self._event_queue = EventQueue()
 self._timeout = timeout

 @property
 def timeout(self):
 """Event queue block timeout."""
 return self._timeout

 @property
 def event_queue(self):
 """The event queue which is populated with file system events
 by emitters and from which events are dispatched by a dispatcher
 thread."""
 return self._event_queue

[docs] def dispatch_events(self, event_queue, timeout):
 """Override this method to consume events from an event queue, blocking
 on the queue for the specified timeout before raising :class:`queue.Empty`.

 :param event_queue:
 Event queue to populate with one set of events.
 :type event_queue:
 :class:`EventQueue`
 :param timeout:
 Interval period (in seconds) to wait before timing out on the
 event queue.
 :type timeout:
 ``float``
 :raises:
 :class:`queue.Empty`
 """

[docs] def run(self):
 while self.should_keep_running():
 try:
 self.dispatch_events(self.event_queue, self.timeout)
 except queue.Empty:
 continue

[docs]class BaseObserver(EventDispatcher):
 """Base observer."""

 def __init__(self, emitter_class, timeout=DEFAULT_OBSERVER_TIMEOUT):
 EventDispatcher.__init__(self, timeout)
 self._emitter_class = emitter_class
 self._lock = threading.RLock()
 self._watches = set()
 self._handlers = dict()
 self._emitters = set()
 self._emitter_for_watch = dict()

 def _add_emitter(self, emitter):
 self._emitter_for_watch[emitter.watch] = emitter
 self._emitters.add(emitter)

 def _remove_emitter(self, emitter):
 del self._emitter_for_watch[emitter.watch]
 self._emitters.remove(emitter)
 emitter.stop()
 try:
 emitter.join()
 except RuntimeError:
 pass

 def _clear_emitters(self):
 for emitter in self._emitters:
 emitter.stop()
 for emitter in self._emitters:
 try:
 emitter.join()
 except RuntimeError:
 pass
 self._emitters.clear()
 self._emitter_for_watch.clear()

 def _add_handler_for_watch(self, event_handler, watch):
 if watch not in self._handlers:
 self._handlers[watch] = set()
 self._handlers[watch].add(event_handler)

 def _remove_handlers_for_watch(self, watch):
 del self._handlers[watch]

 @property
 def emitters(self):
 """Returns event emitter created by this observer."""
 return self._emitters

[docs] def start(self):
 for emitter in self._emitters.copy():
 try:
 emitter.start()
 except Exception:
 self._remove_emitter(emitter)
 raise
 super().start()

[docs] def schedule(self, event_handler, path, recursive=False):
 """
 Schedules watching a path and calls appropriate methods specified
 in the given event handler in response to file system events.

 :param event_handler:
 An event handler instance that has appropriate event handling
 methods which will be called by the observer in response to
 file system events.
 :type event_handler:
 :class:`watchdog.events.FileSystemEventHandler` or a subclass
 :param path:
 Directory path that will be monitored.
 :type path:
 ``str``
 :param recursive:
 ``True`` if events will be emitted for sub-directories
 traversed recursively; ``False`` otherwise.
 :type recursive:
 ``bool``
 :return:
 An :class:`ObservedWatch` object instance representing
 a watch.
 """
 with self._lock:
 watch = ObservedWatch(path, recursive)
 self._add_handler_for_watch(event_handler, watch)

 # If we don't have an emitter for this watch already, create it.
 if self._emitter_for_watch.get(watch) is None:
 emitter = self._emitter_class(event_queue=self.event_queue,
 watch=watch,
 timeout=self.timeout)
 self._add_emitter(emitter)
 if self.is_alive():
 emitter.start()
 self._watches.add(watch)
 return watch

[docs] def add_handler_for_watch(self, event_handler, watch):
 """Adds a handler for the given watch.

 :param event_handler:
 An event handler instance that has appropriate event handling
 methods which will be called by the observer in response to
 file system events.
 :type event_handler:
 :class:`watchdog.events.FileSystemEventHandler` or a subclass
 :param watch:
 The watch to add a handler for.
 :type watch:
 An instance of :class:`ObservedWatch` or a subclass of
 :class:`ObservedWatch`
 """
 with self._lock:
 self._add_handler_for_watch(event_handler, watch)

[docs] def remove_handler_for_watch(self, event_handler, watch):
 """Removes a handler for the given watch.

 :param event_handler:
 An event handler instance that has appropriate event handling
 methods which will be called by the observer in response to
 file system events.
 :type event_handler:
 :class:`watchdog.events.FileSystemEventHandler` or a subclass
 :param watch:
 The watch to remove a handler for.
 :type watch:
 An instance of :class:`ObservedWatch` or a subclass of
 :class:`ObservedWatch`
 """
 with self._lock:
 self._handlers[watch].remove(event_handler)

[docs] def unschedule(self, watch):
 """Unschedules a watch.

 :param watch:
 The watch to unschedule.
 :type watch:
 An instance of :class:`ObservedWatch` or a subclass of
 :class:`ObservedWatch`
 """
 with self._lock:
 emitter = self._emitter_for_watch[watch]
 del self._handlers[watch]
 self._remove_emitter(emitter)
 self._watches.remove(watch)

[docs] def unschedule_all(self):
 """Unschedules all watches and detaches all associated event
 handlers."""
 with self._lock:
 self._handlers.clear()
 self._clear_emitters()
 self._watches.clear()

[docs] def on_thread_stop(self):
 self.unschedule_all()

[docs] def dispatch_events(self, event_queue, timeout):
 event, watch = event_queue.get(block=True, timeout=timeout)

 with self._lock:
 # To allow unschedule/stop and safe removal of event handlers
 # within event handlers itself, check if the handler is still
 # registered after every dispatch.
 for handler in list(self._handlers.get(watch, [])):
 if handler in self._handlers.get(watch, []):
 handler.dispatch(event)
 event_queue.task_done()

 Source code for watchdog.observers.inotify

coding: utf-8
#
Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com>
Copyright 2012 Google, Inc & contributors.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
:module: watchdog.observers.inotify
:synopsis: ``inotify(7)`` based emitter implementation.
:author: Sebastien Martini <seb@dbzteam.org>
:author: Luke McCarthy <luke@iogopro.co.uk>
:author: yesudeep@google.com (Yesudeep Mangalapilly)
:author: Tim Cuthbertson <tim+github@gfxmonk.net>
:platforms: Linux 2.6.13+.

.. ADMONITION:: About system requirements

 Recommended minimum kernel version: 2.6.25.

 Quote from the inotify(7) man page:

 "Inotify was merged into the 2.6.13 Linux kernel. The required library
 interfaces were added to glibc in version 2.4. (IN_DONT_FOLLOW,
 IN_MASK_ADD, and IN_ONLYDIR were only added in version 2.5.)"

 Therefore, you must ensure the system is running at least these versions
 appropriate libraries and the kernel.

.. ADMONITION:: About recursiveness, event order, and event coalescing

 Quote from the inotify(7) man page:

 If successive output inotify events produced on the inotify file
 descriptor are identical (same wd, mask, cookie, and name) then they
 are coalesced into a single event if the older event has not yet been
 read (but see BUGS).

 The events returned by reading from an inotify file descriptor form
 an ordered queue. Thus, for example, it is guaranteed that when
 renaming from one directory to another, events will be produced in
 the correct order on the inotify file descriptor.

 ...

 Inotify monitoring of directories is not recursive: to monitor
 subdirectories under a directory, additional watches must be created.

 This emitter implementation therefore automatically adds watches for
 sub-directories if running in recursive mode.

Some extremely useful articles and documentation:

.. _inotify FAQ: http://inotify.aiken.cz/?section=inotify&page=faq&lang=en
.. _intro to inotify: http://www.linuxjournal.com/article/8478

"""

import os
import threading
from .inotify_buffer import InotifyBuffer

from watchdog.observers.api import (
 EventEmitter,
 BaseObserver,
 DEFAULT_EMITTER_TIMEOUT,
 DEFAULT_OBSERVER_TIMEOUT
)

from watchdog.events import (
 DirDeletedEvent,
 DirModifiedEvent,
 DirMovedEvent,
 DirCreatedEvent,
 FileDeletedEvent,
 FileModifiedEvent,
 FileMovedEvent,
 FileCreatedEvent,
 FileClosedEvent,
 generate_sub_moved_events,
 generate_sub_created_events,
)

class InotifyEmitter(EventEmitter):
 """
 inotify(7)-based event emitter.

 :param event_queue:
 The event queue to fill with events.
 :param watch:
 A watch object representing the directory to monitor.
 :type watch:
 :class:`watchdog.observers.api.ObservedWatch`
 :param timeout:
 Read events blocking timeout (in seconds).
 :type timeout:
 ``float``
 """

 def __init__(self, event_queue, watch, timeout=DEFAULT_EMITTER_TIMEOUT):
 EventEmitter.__init__(self, event_queue, watch, timeout)
 self._lock = threading.Lock()
 self._inotify = None

 def on_thread_start(self):
 path = os.fsencode(self.watch.path)
 self._inotify = InotifyBuffer(path, self.watch.is_recursive)

 def on_thread_stop(self):
 if self._inotify:
 self._inotify.close()
 self._inotify = None

 def queue_events(self, timeout, full_events=False):
 # If "full_events" is true, then the method will report unmatched move events as separate events
 # This behavior is by default only called by a InotifyFullEmitter
 with self._lock:
 event = self._inotify.read_event()
 if event is None:
 return
 if isinstance(event, tuple):
 move_from, move_to = event
 src_path = self._decode_path(move_from.src_path)
 dest_path = self._decode_path(move_to.src_path)
 cls = DirMovedEvent if move_from.is_directory else FileMovedEvent
 self.queue_event(cls(src_path, dest_path))
 self.queue_event(DirModifiedEvent(os.path.dirname(src_path)))
 self.queue_event(DirModifiedEvent(os.path.dirname(dest_path)))
 if move_from.is_directory and self.watch.is_recursive:
 for sub_event in generate_sub_moved_events(src_path, dest_path):
 self.queue_event(sub_event)
 return

 src_path = self._decode_path(event.src_path)
 if event.is_moved_to:
 if full_events:
 cls = DirMovedEvent if event.is_directory else FileMovedEvent
 self.queue_event(cls(None, src_path))
 else:
 cls = DirCreatedEvent if event.is_directory else FileCreatedEvent
 self.queue_event(cls(src_path))
 self.queue_event(DirModifiedEvent(os.path.dirname(src_path)))
 if event.is_directory and self.watch.is_recursive:
 for sub_event in generate_sub_created_events(src_path):
 self.queue_event(sub_event)
 elif event.is_attrib:
 cls = DirModifiedEvent if event.is_directory else FileModifiedEvent
 self.queue_event(cls(src_path))
 elif event.is_modify:
 cls = DirModifiedEvent if event.is_directory else FileModifiedEvent
 self.queue_event(cls(src_path))
 elif event.is_delete or (event.is_moved_from and not full_events):
 cls = DirDeletedEvent if event.is_directory else FileDeletedEvent
 self.queue_event(cls(src_path))
 self.queue_event(DirModifiedEvent(os.path.dirname(src_path)))
 elif event.is_moved_from and full_events:
 cls = DirMovedEvent if event.is_directory else FileMovedEvent
 self.queue_event(cls(src_path, None))
 self.queue_event(DirModifiedEvent(os.path.dirname(src_path)))
 elif event.is_create:
 cls = DirCreatedEvent if event.is_directory else FileCreatedEvent
 self.queue_event(cls(src_path))
 self.queue_event(DirModifiedEvent(os.path.dirname(src_path)))
 elif event.is_close_write and not event.is_directory:
 cls = FileClosedEvent
 self.queue_event(cls(src_path))
 self.queue_event(DirModifiedEvent(os.path.dirname(src_path)))
 # elif event.is_close_nowrite and not event.is_directory:
 # cls = FileClosedEvent
 # self.queue_event(cls(src_path))
 elif event.is_delete_self and src_path == self.watch.path:
 cls = DirDeletedEvent if event.is_directory else FileDeletedEvent
 self.queue_event(cls(src_path))
 self.stop()

 def _decode_path(self, path):
 """Decode path only if unicode string was passed to this emitter. """
 if isinstance(self.watch.path, bytes):
 return path
 return os.fsdecode(path)

class InotifyFullEmitter(InotifyEmitter):
 """
 inotify(7)-based event emitter. By default this class produces move events even if they are not matched
 Such move events will have a ``None`` value for the unmatched part.

 :param event_queue:
 The event queue to fill with events.
 :param watch:
 A watch object representing the directory to monitor.
 :type watch:
 :class:`watchdog.observers.api.ObservedWatch`
 :param timeout:
 Read events blocking timeout (in seconds).
 :type timeout:
 ``float``
 """
 def __init__(self, event_queue, watch, timeout=DEFAULT_EMITTER_TIMEOUT):
 InotifyEmitter.__init__(self, event_queue, watch, timeout)

 def queue_events(self, timeout, events=True):
 InotifyEmitter.queue_events(self, timeout, full_events=events)

class InotifyObserver(BaseObserver):
 """
 Observer thread that schedules watching directories and dispatches
 calls to event handlers.
 """

 def __init__(self, timeout=DEFAULT_OBSERVER_TIMEOUT, generate_full_events=False):
 if (generate_full_events):
 BaseObserver.__init__(self, emitter_class=InotifyFullEmitter, timeout=timeout)
 else:
 BaseObserver.__init__(self, emitter_class=InotifyEmitter,
 timeout=timeout)

 Source code for watchdog.observers.polling

coding: utf-8
#
Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com>
Copyright 2012 Google, Inc & contributors.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
:module: watchdog.observers.polling
:synopsis: Polling emitter implementation.
:author: yesudeep@google.com (Yesudeep Mangalapilly)
:author: contact@tiger-222.fr (Mickaël Schoentgen)

Classes

.. autoclass:: PollingObserver
 :members:
 :show-inheritance:

.. autoclass:: PollingObserverVFS
 :members:
 :show-inheritance:
 :special-members:
"""

import os
import threading
from functools import partial

from watchdog.utils.dirsnapshot import DirectorySnapshot, DirectorySnapshotDiff
from watchdog.observers.api import (
 EventEmitter,
 BaseObserver,
 DEFAULT_OBSERVER_TIMEOUT,
 DEFAULT_EMITTER_TIMEOUT
)

from watchdog.events import (
 DirMovedEvent,
 DirDeletedEvent,
 DirCreatedEvent,
 DirModifiedEvent,
 FileMovedEvent,
 FileDeletedEvent,
 FileCreatedEvent,
 FileModifiedEvent
)

class PollingEmitter(EventEmitter):
 """
 Platform-independent emitter that polls a directory to detect file
 system changes.
 """

 def __init__(self, event_queue, watch, timeout=DEFAULT_EMITTER_TIMEOUT,
 stat=os.stat, listdir=os.scandir):
 EventEmitter.__init__(self, event_queue, watch, timeout)
 self._snapshot = None
 self._lock = threading.Lock()
 self._take_snapshot = lambda: DirectorySnapshot(
 self.watch.path, self.watch.is_recursive, stat=stat, listdir=listdir)

 def on_thread_start(self):
 self._snapshot = self._take_snapshot()

 def queue_events(self, timeout):
 # We don't want to hit the disk continuously.
 # timeout behaves like an interval for polling emitters.
 if self.stopped_event.wait(timeout):
 return

 with self._lock:
 if not self.should_keep_running():
 return

 # Get event diff between fresh snapshot and previous snapshot.
 # Update snapshot.
 try:
 new_snapshot = self._take_snapshot()
 except OSError:
 self.queue_event(DirDeletedEvent(self.watch.path))
 self.stop()
 return

 events = DirectorySnapshotDiff(self._snapshot, new_snapshot)
 self._snapshot = new_snapshot

 # Files.
 for src_path in events.files_deleted:
 self.queue_event(FileDeletedEvent(src_path))
 for src_path in events.files_modified:
 self.queue_event(FileModifiedEvent(src_path))
 for src_path in events.files_created:
 self.queue_event(FileCreatedEvent(src_path))
 for src_path, dest_path in events.files_moved:
 self.queue_event(FileMovedEvent(src_path, dest_path))

 # Directories.
 for src_path in events.dirs_deleted:
 self.queue_event(DirDeletedEvent(src_path))
 for src_path in events.dirs_modified:
 self.queue_event(DirModifiedEvent(src_path))
 for src_path in events.dirs_created:
 self.queue_event(DirCreatedEvent(src_path))
 for src_path, dest_path in events.dirs_moved:
 self.queue_event(DirMovedEvent(src_path, dest_path))

[docs]class PollingObserver(BaseObserver):
 """
 Platform-independent observer that polls a directory to detect file
 system changes.
 """

 def __init__(self, timeout=DEFAULT_OBSERVER_TIMEOUT):
 BaseObserver.__init__(self, emitter_class=PollingEmitter, timeout=timeout)

[docs]class PollingObserverVFS(BaseObserver):
 """
 File system independent observer that polls a directory to detect changes.
 """

[docs] def __init__(self, stat, listdir, polling_interval=1):
 """
 :param stat: stat function. See ``os.stat`` for details.
 :param listdir: listdir function. See ``os.scandir`` for details.
 :type polling_interval: float
 :param polling_interval: interval in seconds between polling the file system.
 """
 emitter_cls = partial(PollingEmitter, stat=stat, listdir=listdir)
 BaseObserver.__init__(self, emitter_class=emitter_cls, timeout=polling_interval)

 Source code for watchdog.utils.dirsnapshot

coding: utf-8
#
Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com>
Copyright 2012 Google, Inc & contributors.
Copyright 2014 Thomas Amland <thomas.amland@gmail.com>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
:module: watchdog.utils.dirsnapshot
:synopsis: Directory snapshots and comparison.
:author: yesudeep@google.com (Yesudeep Mangalapilly)
:author: contact@tiger-222.fr (Mickaël Schoentgen)

.. ADMONITION:: Where are the moved events? They "disappeared"

 This implementation does not take partition boundaries
 into consideration. It will only work when the directory
 tree is entirely on the same file system. More specifically,
 any part of the code that depends on inode numbers can
 break if partition boundaries are crossed. In these cases,
 the snapshot diff will represent file/directory movement as
 created and deleted events.

Classes

.. autoclass:: DirectorySnapshot
 :members:
 :show-inheritance:

.. autoclass:: DirectorySnapshotDiff
 :members:
 :show-inheritance:

.. autoclass:: EmptyDirectorySnapshot
 :members:
 :show-inheritance:

"""

import errno
import os
from stat import S_ISDIR

[docs]class DirectorySnapshotDiff:
 """
 Compares two directory snapshots and creates an object that represents
 the difference between the two snapshots.

 :param ref:
 The reference directory snapshot.
 :type ref:
 :class:`DirectorySnapshot`
 :param snapshot:
 The directory snapshot which will be compared
 with the reference snapshot.
 :type snapshot:
 :class:`DirectorySnapshot`
 :param ignore_device:
 A boolean indicating whether to ignore the device id or not.
 By default, a file may be uniquely identified by a combination of its first
 inode and its device id. The problem is that the device id may (or may not)
 change between system boots. This problem would cause the DirectorySnapshotDiff
 to think a file has been deleted and created again but it would be the
 exact same file.
 Set to True only if you are sure you will always use the same device.
 :type ignore_device:
 :class:`bool`
 """

 def __init__(self, ref, snapshot, ignore_device=False):
 created = snapshot.paths - ref.paths
 deleted = ref.paths - snapshot.paths

 if ignore_device:
 def get_inode(directory, full_path):
 return directory.inode(full_path)[0]
 else:
 def get_inode(directory, full_path):
 return directory.inode(full_path)

 # check that all unchanged paths have the same inode
 for path in ref.paths & snapshot.paths:
 if get_inode(ref, path) != get_inode(snapshot, path):
 created.add(path)
 deleted.add(path)

 # find moved paths
 moved = set()
 for path in set(deleted):
 inode = ref.inode(path)
 new_path = snapshot.path(inode)
 if new_path:
 # file is not deleted but moved
 deleted.remove(path)
 moved.add((path, new_path))

 for path in set(created):
 inode = snapshot.inode(path)
 old_path = ref.path(inode)
 if old_path:
 created.remove(path)
 moved.add((old_path, path))

 # find modified paths
 # first check paths that have not moved
 modified = set()
 for path in ref.paths & snapshot.paths:
 if get_inode(ref, path) == get_inode(snapshot, path):
 if ref.mtime(path) != snapshot.mtime(path) or ref.size(path) != snapshot.size(path):
 modified.add(path)

 for (old_path, new_path) in moved:
 if ref.mtime(old_path) != snapshot.mtime(new_path) or ref.size(old_path) != snapshot.size(new_path):
 modified.add(old_path)

 self._dirs_created = [path for path in created if snapshot.isdir(path)]
 self._dirs_deleted = [path for path in deleted if ref.isdir(path)]
 self._dirs_modified = [path for path in modified if ref.isdir(path)]
 self._dirs_moved = [(frm, to) for (frm, to) in moved if ref.isdir(frm)]

 self._files_created = list(created - set(self._dirs_created))
 self._files_deleted = list(deleted - set(self._dirs_deleted))
 self._files_modified = list(modified - set(self._dirs_modified))
 self._files_moved = list(moved - set(self._dirs_moved))

 def __str__(self):
 return self.__repr__()

 def __repr__(self):
 fmt = (
 '<{0} files(created={1}, deleted={2}, modified={3}, moved={4}),'
 ' folders(created={5}, deleted={6}, modified={7}, moved={8})>'
)
 return fmt.format(
 type(self).__name__,
 len(self._files_created),
 len(self._files_deleted),
 len(self._files_modified),
 len(self._files_moved),
 len(self._dirs_created),
 len(self._dirs_deleted),
 len(self._dirs_modified),
 len(self._dirs_moved)
)

 @property
 def files_created(self):
 """List of files that were created."""
 return self._files_created

 @property
 def files_deleted(self):
 """List of files that were deleted."""
 return self._files_deleted

 @property
 def files_modified(self):
 """List of files that were modified."""
 return self._files_modified

 @property
 def files_moved(self):
 """
 List of files that were moved.

 Each event is a two-tuple the first item of which is the path
 that has been renamed to the second item in the tuple.
 """
 return self._files_moved

 @property
 def dirs_modified(self):
 """
 List of directories that were modified.
 """
 return self._dirs_modified

 @property
 def dirs_moved(self):
 """
 List of directories that were moved.

 Each event is a two-tuple the first item of which is the path
 that has been renamed to the second item in the tuple.
 """
 return self._dirs_moved

 @property
 def dirs_deleted(self):
 """
 List of directories that were deleted.
 """
 return self._dirs_deleted

 @property
 def dirs_created(self):
 """
 List of directories that were created.
 """
 return self._dirs_created

[docs]class DirectorySnapshot:
 """
 A snapshot of stat information of files in a directory.

 :param path:
 The directory path for which a snapshot should be taken.
 :type path:
 ``str``
 :param recursive:
 ``True`` if the entire directory tree should be included in the
 snapshot; ``False`` otherwise.
 :type recursive:
 ``bool``
 :param stat:
 Use custom stat function that returns a stat structure for path.
 Currently only st_dev, st_ino, st_mode and st_mtime are needed.

 A function taking a ``path`` as argument which will be called
 for every entry in the directory tree.
 :param listdir:
 Use custom listdir function. For details see ``os.scandir``.
 """

 def __init__(self, path, recursive=True,
 stat=os.stat, listdir=os.scandir):
 self.recursive = recursive
 self.stat = stat
 self.listdir = listdir

 self._stat_info = {}
 self._inode_to_path = {}

 st = self.stat(path)
 self._stat_info[path] = st
 self._inode_to_path[(st.st_ino, st.st_dev)] = path

 for p, st in self.walk(path):
 i = (st.st_ino, st.st_dev)
 self._inode_to_path[i] = p
 self._stat_info[p] = st

 def walk(self, root):
 try:
 paths = [os.path.join(root, entry if isinstance(entry, str) else entry.name)
 for entry in self.listdir(root)]
 except OSError as e:
 # Directory may have been deleted between finding it in the directory
 # list of its parent and trying to delete its contents. If this
 # happens we treat it as empty. Likewise if the directory was replaced
 # with a file of the same name (less likely, but possible).
 if e.errno in (errno.ENOENT, errno.ENOTDIR, errno.EINVAL):
 return
 else:
 raise

 entries = []
 for p in paths:
 try:
 entry = (p, self.stat(p))
 entries.append(entry)
 yield entry
 except OSError:
 continue

 if self.recursive:
 for path, st in entries:
 try:
 if S_ISDIR(st.st_mode):
 for entry in self.walk(path):
 yield entry
 except PermissionError:
 pass

 @property
 def paths(self):
 """
 Set of file/directory paths in the snapshot.
 """
 return set(self._stat_info.keys())

[docs] def path(self, id):
 """
 Returns path for id. None if id is unknown to this snapshot.
 """
 return self._inode_to_path.get(id)

[docs] def inode(self, path):
 """ Returns an id for path. """
 st = self._stat_info[path]
 return (st.st_ino, st.st_dev)

 def isdir(self, path):
 return S_ISDIR(self._stat_info[path].st_mode)

 def mtime(self, path):
 return self._stat_info[path].st_mtime

 def size(self, path):
 return self._stat_info[path].st_size

[docs] def stat_info(self, path):
 """
 Returns a stat information object for the specified path from
 the snapshot.

 Attached information is subject to change. Do not use unless
 you specify `stat` in constructor. Use :func:`inode`, :func:`mtime`,
 :func:`isdir` instead.

 :param path:
 The path for which stat information should be obtained
 from a snapshot.
 """
 return self._stat_info[path]

 def __sub__(self, previous_dirsnap):
 """Allow subtracting a DirectorySnapshot object instance from
 another.

 :returns:
 A :class:`DirectorySnapshotDiff` object.
 """
 return DirectorySnapshotDiff(previous_dirsnap, self)

 def __str__(self):
 return self.__repr__()

 def __repr__(self):
 return str(self._stat_info)

[docs]class EmptyDirectorySnapshot:
 """Class to implement an empty snapshot. This is used together with
 DirectorySnapshot and DirectorySnapshotDiff in order to get all the files/folders
 in the directory as created.
 """

[docs] @staticmethod
 def path(_):
 """Mock up method to return the path of the received inode. As the snapshot
 is intended to be empty, it always returns None.

 :returns:
 None.
 """
 return None

 @property
 def paths(self):
 """Mock up method to return a set of file/directory paths in the snapshot. As
 the snapshot is intended to be empty, it always returns an empty set.

 :returns:
 An empty set.
 """
 return set()

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Watchdog

 		
 Installation

 		
 Installing from PyPI using pip

 		
 Installing from source tarballs

 		
 Installing from the code repository

 		
 Dependencies

 		
 Installing Dependencies

 		
 Supported Platforms (and Caveats)

 		
 Quickstart

 		
 A Simple Example

 		
 API Reference

 		
 watchdog.events

 		
 Event Classes

 		
 Event Handler Classes

 		
 watchdog.observers.api

 		
 Immutables

 		
 Collections

 		
 Classes

 		
 watchdog.observers

 		
 Classes

 		
 watchdog.observers.polling

 		
 Classes

 		
 watchdog.utils

 		
 Classes

 		
 watchdog.utils.dirsnapshot

 		
 Classes

 		
 watchdog.tricks

 		
 Classes

 		
 Contributing

 		
 Important URLs

 		
 Before you start

 		
 Setting up the Work Environment

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

